13 research outputs found

    Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    Get PDF
    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions

    The in-flight calibration of the Hubble Space Telescope fine guidance sensors, 2 (a success story)

    Get PDF
    The Hubble Space Telescope's fine guidance sensors (FGS's) are unique in the performance levels being attempted; spacecraft control and astrometric research with accuracies better than 3 milli-arcseconds (mas) are the ultimate goals. This paper presents a review of the in-flight calibration of the sensors, describing both the algorithms used and the results achieved to date. The work was done primarily in support of engineering operations related to spacecraft pointing and control and secondarily in support of the astrometric science calibration effort led by the Space Telescope Astrometry Team. Calibration items of principal interest are distortion, sensor magnification, and relative alignment. An initial in-flight calibration of the FGS's was performed in December 1990; this calibration has been used operationally over the past few years. Followup work demonstrated that significant, unexpected temporal variations in the calibration parameters are occurring; provided good characterization of the variation; and set the stage for a distortion calibration designed to achieve the full design accuracy for one of the FGS's. This full distortion calibration, using data acquired in January 1993, resulted in a solution having single-axis residuals with a standard deviation of 2.5 mas. Scale and alignment calibration results for all of the FGS's have been achieved commensurate with the best ground-based astrometric catalogs (root-mean-square error approximately 25 mas). A calibration monitoring program has been established to allow regular updates of the calibration parameters as needed

    In-flight scale/distortion calibration of the Hubble Space Telescope fixed-head star trackers

    Get PDF
    This paper describes an in-flight scale and distortion calibration procedure that has been developed for the Ball Aerospace Systems Division Fixed-Head Star Trackers (FHST's) used on the Hubble Space Telescope (HST). The FHST is a magnetically focused and deflected imaging sensor that is designed to track stars as faint as m(sub v) = 5.7 over an 8 degree by 8 degree field of view. Raw FHST position measurements are accurate to approximately 200 arcseconds, but this can be improved to 10-15 arcseconds by processing the raw measurements through calibration polynomials that correct for flat field, temperature intensity, and magnetic field effects. The coefficients for these polynomials were initially determined using ground test data. On HST the use of three FHST's is an integral part of the preliminary attitude update procedures required before the acquisition of guide stars for science observations. To this end, FHST-based attitude determination having single-axis errors no worse than 22 arcseconds (1 sigma) is required. In early 1991 it became evident that one of the HST FHST's was experiencing a significant change in its optical scale. By mid-1993 the size of this error had grown to a point that, if not corrected, it would correspond to a maximum position error on the order of 100 arcseconds. Subsequent investigations demonstrated that substantial, uncompensated cubic distortion effects had also developed, the maximum contribution to position errors from the cubic terms being on the order of 30 arcseconds. To ensure accurate FHST-based attitude updates, procedures have been developed to redetermine the FHST scale and distortion calibration coefficients based on in-flight data gathered during normal HST operations. These scale and distortion calibrations have proven very effective operationally, and procedures are in place to monitor FHST calibration changes on a continuing basis

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Paul Hesse Collection at the Academy of Natural Sciences of Philadelphia, with a review of names for Mollusca introduced by Hesse

    No full text
    corecore