2,217 research outputs found

    Following in the footsteps of smallpox: can we achieve the global eradication of measles?

    Get PDF
    BACKGROUND: Although an effective measles vaccine has been available for almost 40 years, in 2000 there were about 30 million measles infections worldwide and 777,000 measles-related deaths. The history of smallpox suggests that achieving measles eradication depends on several factors; the biological characteristics of the organism; vaccine technology; surveillance and laboratory identification; effective delivery of vaccination programmes and international commitment to eradication. DISCUSSION: Like smallpox, measles virus has several biological characteristics that favour eradication. Humans are the only reservoir for the virus, which causes a visible illness and infection leading to life-long immunity. As the measles virus has only one genetic serotype which is relatively stable over time, the same basic vaccine can be used world-wide. Vaccination provides protection against measles infection for at least 15 years, although efficacy may be reduced due to host factors such as nutritional status. Measles vaccination may also confer other non-specific health benefits leading to reduced mortality. Accurate laboratory identification of measles cases enables enhanced surveillance to support elimination programmes. The "catch-up, keep-up, follow-up" vaccination programme implemented in the Americas has shown that measles elimination is possible using existing technologies. On 17th October 2003 the "Cape Town Measles Declaration" by the World Health Organisation and the United Nations Childrens Fund called on governments to intensify efforts to reduce measles mortality by supporting universal vaccination coverage and the development of more effective vaccination. SUMMARY: Although more difficult than for smallpox, recent experience in the Americas suggests that measles eradication is technically feasible. Growing international support to deliver these programmes means that measles, like smallpox, may very well become a curiosity of history

    Risk of low birth weight near EUROHAZCON hazardous waste landfill sites in England.

    No full text
    Few studies have investigated the occurrence of both low birth weight (LBW) and congenital anomalies in populations living near hazardous waste landfill sites. The authors investigated the risk of LBW near 10 English hazardous waste landfill sites included in a previous European study, which reported an increased risk of congenital anomalies. Odds ratios, adjusted for sex, deprivation, year of birth, and study area (pooled ORs), were estimated for LBW (< 2500 gm) within 0-3 km compared with 3-7 km zones around the landfill sites. The authors found a small and not statistically significant increase in risk of LBW (OR = 1.03, 95% confidence interval = 0.98-1.08) within 3 km of hazardous waste landfill sites. Their findings suggest that previously reported results for congenital anomalies should not be extrapolated to a wider range of pregnancy outcomes but should be evaluated separately for each

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance

    Get PDF
    Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis (sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR functio

    Materials characterisation part II: tip geometry of the Vickers indenter for microindentation tests

    Get PDF
    This is the second of two papers by the authors associated with materials characterisation methods based on hardness testing. It is important to have knowledge of the tip geometry of the indenter employed in the hardness test as this affects the correctness of the value of contact area parameter used to determine the mechanical properties. In this paper, outcomes of a study concerned with the tip geometry of the Vickers microindenter are presented. Results from experiment are compared with results from published works and the most current accepted analytical models. A new non-contact methodology based on a residual imprint imaging process is developed and further compared with other methods using experimental and numerical analyses over a wide range of material properties. For confirmation, an assessment was undertaken using numerical dimensional analysis which permitted a large range of materials to be explored. It is shown that the proposed method is more accurate compared with other methods regardless of the mechanical properties of the material. The outcomes demonstrate that measuring contact area with the new method enhanced the overall relative error in the resulting mechanical properties including hardness and Young’s modulus of elasticity. It is also shown that the value of the contact area using actual indenter geometry obtained from experimental load-displacement analysis or FEM numerical analysis is more accurate than the value obtained from the assumption of perfect indenter geometry and hence can be used for materials with low strain hardening property. © 2017 Springer-Verlag Londo

    Tuning hardness in calcite by incorporation of amino acids

    Get PDF
    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Suspension High Velocity Oxy-Fuel (SHVOF)-sprayed alumina coatings: microstructure, nanoindentation and wear

    Get PDF
    Suspension High Velocity Oxy Fuel Spraying (SHVOF) can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from sub-micron sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt% amorphous phase and 26 wt% crystalline phase (95 wt% gamma and 3 wt% alpha alumina) while the 72 kW coating contained lower 58 wt% amorphous phase and 42 wt% crystalline phases (73 wt% was alpha and 26 wt % gamma). The 101 kW coating had a dry sliding specific wear rate between 4-4.5 x 10-5 mm3/Nm, 2 orders of magnitude higher than the 72 kW coating wear rate of 2-4.2 x 10-7 mm3/Nm. A severe wear regime dominated by brittle fracture and grain pull out of the coating was responsible for the wear of the 101 kW coating, explained by mean fracture toughness three times lower than the 72 kW coating, owing to the almost complete absence of alpha alumina

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore