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Abstract

Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), causative agents of Human African Trypanosomiasis
(sleeping sickness) in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors
(TLFs), components of innate immunity in human serum that protect against infection by other African trypanosomes. In
Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA) protein. The mechanism in Tbg is less
well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin
receptor (HpHbR). HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb), a member of the T. brucei
species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive
geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is
conserved in the most widespread form of Tbg (Tbg group 1) and not found in related taxa, which are either human serum
susceptible (Tbb) or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2). We hypothesize that this
single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg
group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that
human serum resistance in Tbg group 2 is likely independent of HpHbR function.
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Introduction

Trypanosomiasis, a deadly disease of humans and livestock in

sub-Saharan Africa, is caused by protozoan parasites of the genus

Trypanosoma, which are transmitted between mammalian hosts by

insect vectors of the genus Glossina (tsetse). Human-infective

members of the Trypanosoma brucei complex cause the human form

of the disease, Human African Trypanosomiasis (HAT), or sleep-

ing sickness. T. b. rhodesiense (Tbr) causes an acute form of HAT in

eastern Africa, while T. b. gambiense group 1 (Tbg1) causes a chronic

form of the disease in western and central Africa and accounts for

over 90% of reported cases (Figure 1a). T. b. gambiense group 2

(Tbg2), a rare form described from West Africa in the 1970s and

1980s, also causes human disease but the trait of human-infectivity

is not stable [1,2,3]. The final member of the brucei complex, T. b.

brucei (Tbb), is not infective to humans, but, together with other

animal trypanosome species, causes the livestock wasting disease,

Nagana, across a range that overlaps with that of the human-

infective parasites.

Humans possess an innate resistance to some trypanosomes

through the action of trypanosome lytic factors (TLFs) in their

serum [4]. TLF-1 is a high-density lipoprotein complex that in-

cludes the active toxin apolipoprotein L-I (apoL-I) in association

with haptoglobin-related protein (Hpr). In the primary immune

pathway [5,6,7], TLF-1 is bound and internalized via a hapto-

globin haemoglobin receptor (HpHbR) on the surface of sus-

ceptible trypanosomes. Uptake of TLF-1 is followed by disruption

of the lysosomal membrane by apoL-I and eventual cell lysis.

While Tbb is susceptible to lysis by human TLF-1, Tbr, Tbg1 and

Tbg2 are resistant. In Tbr, the serum-resistance associated (SRA)

protein confers resistance to TLF-1 [8] by binding directly to

apoL-I after it has been internalized into the cell, inhibiting its

lysosome-lytic capacity [9]. Tbg1 and Tbg2, on the other hand, lack

the gene encoding SRA and are thought to have evolved an

independent mechanism to prevent lysis by TLF.

In Tbg2, apoL-I is also internalized, but lysis is prevented by an

unidentified mechanism [10]. In Tbg1, the mechanism is better

understood and appears to involve reduced expression and altered
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function of the parasite HpHbR [11]. Sequencing of a few isolates

of Tbg and Tbb led Kieft et al. [11] to suggest that mutations in

HpHbR may have altered TLF-1 binding in Tbg1. Specifically, the

authors identified five non-synonymous substitutions shared by the

four sequenced isolates of Tbg1, but not present in two Tbb isolates.

This work has helped to narrow the universe of possible structural

differences in HpHbR that could, for example, eventually be

exploited to design novel drugs to overcome Tbg1 resistance. How-

ever, the small number of isolates examined to date is not sufficient

to determine whether the mutations are really Tbg1-specific. While

genetic variation in Tbg1 is extremely limited [12,13], the remainder

of the T. brucei complex exhibits relatively high variation, most of

which does not partition into neatly defined geographic or

taxonomic units [14,15,16,17]. Thus, characterizing the genetic

differences that contribute to a critical epidemiological trait such as

human infectivity requires that those differences be evaluated in a

comprehensive geographical and taxonomic context.

In the present study, we tested if the five non-synonymous

substitutions previously hypothesized to alter HpHbR activity in

Tbg1 [11] are both conserved in Tbg1 isolates and also absent from

other T. brucei subspecies by examining HpHbR gene variation in

T. brucei s.l. sampled across the entire range of the species complex.

By narrowing the pool of substitutions that are specific to Tbg1, we

expect to facilitate future functional studies aimed at understanding

the contribution of HpHbR to conferring human serum resistance.

Methods

Sampling
Isolates of Tbb, Tbg1, Tbg2 and Tbr, were selected to incorporate

representative genetic diversity from the entire geographic range

of the T. brucei complex (Table S1, Figure 1b). When available, we

included isolates of all co-occurring taxa from each country sam-

pled (Figure 1b).

PCR amplification and sequencing
For each isolate, DNA was extracted as described in [17]. PCR

was performed using primers designed from Tbb (TREU927) and

Tbg1 (Dal972) TriTrypDB database sequences (Tb927.6.440 and

Tbg972.6.120, respectively) to amplify a 1297 base pair (bp) frag-

ment that encompassed the entire HpHbR gene (HpHbR_F 59

CGGGAAAGTTGTACGCAAG, HpHbR_R2 59 CGACCACT

TAATGTTACGAGG). For each PCR, 2–4 mL of a 1:10 dilution

of DNA extract were used. PCR reactions were performed using

the reagents provided with GoTaqH DNA Polymerase and Green

Master Mix. Difficult templates were amplified using Failsafe PCR

2X PreMixes Buffers (Epicentre Biotechnologies, Madison WI).

All PCR reactions used the following cycle: Initial denaturation

95uC for 2 min, 50 cycles of 95uC for 35 s, 58uC for 35 s, and

72uC for 1 min 20 s and a final extension at 72uC for 7 min. PCR

success was verified with 1% agarose gel electrophoresis. PCR

products were purified and then sequenced (Yale DNA Analysis

Facility) using two internal primers located in the middle of the

sequence (HpHbR_F2in 59 TGCTCGAGATATTCCTCAAG,

HpHbR_Rin 59 CTCCCACTGAAGCATTAGAC). The se-

quenced fragment included 22 nucleotides upstream of the HpHbR

start codon, the entire HpHbR gene and 62 nucleotides down-

stream of the HpHbR stop codon.

Sequence analysis and phasing of alleles
Sequences generated using the internal primers overlapped by

approximately 200 bp permitting the assembly of an entire con-

tiguous sequence of the HpHbR gene. Contiguous sequences were

constructed and chromatograms from each isolate were manually

examined for double peaks using the CLCBio DNA Workbench

5.7 (Cambridge, MA). Sites with double peaks were assigned the

appropriate nucleotide ambiguity code. Sequences were aligned

manually using MacClade 4.08 [18].

Samples with double peaks were considered heterozygotes. We

used the programs SeqPhase [19] to format files and PHASE 2.1.1

[20] to resolve individual alleles from heterozygous sequences. To

assess evidence for recombinant alleles and to relax the assumption

of a stepwise mutation model, we employed the recombination

model (MR) and the parent-independent models, respectively.

Each run used 1000 iterations and a burnin of 500 generations

and thinning interval = 1. The dataset was run twice with different

random starting seeds and checked for consistency. The replicate

with the best average goodness-of-fit was selected for subsequent

analyses.

Phylogenetic analysis and amino acid alignment
Nucleotide DNA sequence alignments were generated from

phased alleles in MacClade 4.08. Haplotype networks were

constructed in the program TCS [21]. DNA sequences were

translated to amino acids and aligned in MacClade 4.08. Non-

coding regions were removed from sequences and amino acid

sequences were compared to those generated by [11].

Results

Sampling and allelic phase inference

We collected 1296 bp of sequence from each of 65 T. brucei

isolates: 32 from Tbb, 15 from Tbg1, five from Tbg2 and 13 from

Tbr. In addition, we generated sequence for one isolate each of

Trypanosoma equiperdum and Trypanosoma evansi (Table S1), both of

which are also members of the subgenus Trypanozoon but are not

human infective (reviewed in [3]).

Of the 67 isolates sequenced in this study, 30 were heterozygous

at the locus sequenced. PHASE 2.1.1 inferred a total of 34 alleles

present in the 67 isolates. For all heterozygotes, allele pairs had

Bayesian posterior probabilities of 1.0 across replicate runs,

indicating that no alternative allele sequences could be inferred

from the heterozygotes.

Author Summary

Human African Trypanosomiasis, or sleeping sickness, is
caused by two different parasites: Trypanosoma brucei
gambiense (Tbg) and T. b. rhodesiense (Tbr). Each parasite
employs a different mechanism to resist trypanosome lytic
factor (TLF), the active innate immune component of
human serum. In Tbg group 1, which causes the vast
majority of disease cases, the mechanism is thought to
involve the reduced activity of a receptor involved in
binding and internalizing TLF. In this study, we investigate
genetic variation in this receptor across a broad geo-
graphic sample of Tbg and closely related trypanosomes to
test whether unique polymorphisms in the receptor from
Tbg may explain its altered function. We identified a single
mutation in all copies of the receptor gene sequenced
from Tbg but not in any other closely related species. This
finding suggests that this single mutation could play a key
role in conferring human infectivity to Tbg. Given the
possible consequences for drug development and diag-
nostics, we suggest that future functional studies target
this mutation to fully elucidate its role.

Genetic Variation in T. brucei s.l. HpHbR
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Nucleotide variation within and among T. brucei strains
The 34 alleles recovered in this study exhibited a total of 40

variable sites, of which four were located outside the HpHbR

coding region. Each of these four sites occurred in a distinct allele

(f2, c, u3, z1) across a total of five isolates (Boula (Tbg1), STIB338

(Tbr), STIB386 (Tbg2), STIB777AE (Tbb), and KP13 (Tbb)). The

remaining 36 variable sites were found within the coding region of

HpHbR (File S1).

Most allelic diversity (28 alleles) was found in isolates of Tbb, Tbr

and Tbg2 and much of this diversity was common to two or more

taxa. Five of the seven alleles recovered from Tbr were identical to

those found in Tbb. Likewise, four of the five alleles recovered from

Tbg2 were also identical to alleles in Tbb. The most common allele

in this study (u1; Table S1) was recovered from Tbb, Tbr and Tbg2.

In contrast to these observations, we recovered four distinct alleles

from Tbg1, but none of these were shared with any member of the

subgenus Trypanozoon. Allelic diversity in Tbg1 was relatively low.

Allele z1 (identical to the Tbg1 sequence reported in Kieft et al.

[2010]) was the most common Tbg1 variant and was recovered

from 26 of 30 sampled chromosomes. The remaining Tbg1 alleles

differed by only one nucleotide from this common variant, z1.

Trypanosoma equiperdum sequences were more similar to Tbb and Tbr

sequences, though both alleles from T. equiperdum were unique. In

T. evansi, alleles were identical to the most common allele found in

Tbb, Tbr and Tbg2 (Fig. 1b).

Protein coding differences inferred from nucleotide
sequence

The HpHbR protein consists of 403 amino acids. In silico

translation of the DNA sequences of the 34 alleles described above

yielded 25 unique protein sequences (Figure 1, Figure S1).

Notably, the single nucleotide difference in HpHbR that distin-

Figure 1. Trypanosoma brucei distribution, sampling scheme and relationships among HpHbR DNA and amino acid sequences. a.
Approximate geographic distribution of the animal-restricted parasite T. b. brucei (blue) and the human-infective parasites T. b. gambiense groups 1
and 2 (Tbg1, green; Tbg2, yellow) and T. b. rhodesiense (Tbr; red) which cause human African trypanosomiasis. b. A haplotype network (top) shows the
relationships among unique HpHbR alleles (represented by colored circles (sampled) or black dots (unsampled)) and highlights the differentiation of
Tbg1 from other taxa at this locus. Each line in the network represents one nucleotide change. Circle size is proportional to allele frequency. Colored
sections of the circles indicate the relative frequency with which a particular allele was recovered from different taxa within the subgenus
Trypanozoon (key at bottom left). Dots on the map indicate the country where isolates of each taxon, as shown by color, were collected. Grey shading
in the network joins alleles with an identical inferred amino acid sequence. Unique amino acid sequences found in this study are identified by a
capital letter in the haplotype network and a corresponding letter in the alignment of variable positions (bottom right). Reference sequence A,
previously identified in Tbb strain Lister 427 (Kieft et al. 2010) was not recovered in this study. Asterisks indicate amino acid sequences found in more
than one isolate. Amino acids in the alignment are represented with standard single letter codes and color-coded for ease of comparison across
sequences. The two amino acid sequences recovered from Tbg1 (Y and Z) share a single substitution at position 210 that was not found in any other
taxa. Amino acid positions labeled in blue correspond to positions previously identified as playing a possible role in altered activity of HpHbR in Tbg1
(Kieft et al. 2010).
doi:10.1371/journal.pntd.0001728.g001

Genetic Variation in T. brucei s.l. HpHbR
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guished all isolates of Tbg1 from all other T. brucei isolates sampled

in this study was non-synonymous, resulting in the replacement of

leucine with serine at position 210 (L210S; Figure 1b, Figure S1).

With one exception, all Tbg1 isolates possessed two copies of

HpHbR that coded for just this single amino acid sequence (Z). In

the exception, isolate ITMAP020578, one allele coded for amino

acid sequence Z and the second allele coded for a second peptide

(Y) differing from Z by just one amino acid at position 212. All

other variation in HpHbR amino acid sequences partitioned to

differences within and among Tbb, Tbr and Tbg2.

Discussion

The primary goal of this study was to examine the genetic

diversity of HpHbR in a broad geographical and taxonomic

context to better characterize the mutations that potentially give

rise to differences in HpHbR function and that may contribute to

the phenotype of human serum resistance observed in Tbg1. An

earlier study of HpHbR genetic diversity in a limited sample of

parasite isolates identified five non-synonymous substitutions

shared by Tbg1, but not found in Tbb, suggesting that these five

differences could play an important functional role [11]. By

sampling more broadly across the subgenus Trypanozoon and across

Africa, we have demonstrated that just one of these substitutions

(L210S) is conserved in Tbg1 and also absent from the most closely

related trypanosome taxa, all of which are either susceptible to

human serum (Tbb) or known to possess an alternative resistance

mechanism (Tbr or Tbg2). Although our sample size remains

relatively limited compared to the vast number of parasites

distributed widely across Africa, the extremely low genetic

diversity observed in Tbg1 HpHbR is consistent with prior

population genetic studies [12,13,17] and we hypothesize that

the mutation L210S is likely fixed in the taxon. This could be

extended to field-circulating Tbg1 by using either allele specific

PCR primers or a restriction fragment length polymorphism

(RFLP) that targets the single nucleotide substitution (e.g., enzyme

PleI).

To the extent that the unique substitution in Tbg1 HpHbR

prevents the uptake of TLF-1, this single amino acid change may

play a key role in conferring serum resistance to this parasite. A

role for HpHbR in facilitating lytic activity of human serum was

originally established by experiments demonstrating that loss of

HpHbR in Tbb (through RNA interference or gene knockout)

conferred resistance to TLF-mediated lysis [22]. Later work

demonstrated that Tbb selected to be TLF-1-resistant exhibited

reduced HpHbR expression. Furthermore, the ectopic expression

of Tbg1 HpHbR (using an allele identical to the most common

Tbg1 allele identified in our study) in these serum resistant Tbb

was not sufficient to restore human serum susceptibility, pro-

viding evidence for the altered function of Tbg1 HpHbR [11].

Our data indicate that this altered function likely stems from the

L210S mutation in Tbg1, a substitution that effects an approx-

imate 20-fold reduction in the affinity of HpHbR for HpHb [23].

Given that L210S appears to be the single mutation that dis-

tinguishes Tbg1 HpHbR from the HpHbR of all closely related

members of the Trypanozoon subgenus, we hypothesize that this

single mutation could play a major role in the serum resistance of

Tbg1. However, this mutation is unlikely to be the sole factor. As

noted previously, reduced expression levels of HpHbR are also

likely to play a role in Tbg1 serum resistance [10,11]. Also, while

HpHbR is likely to be the main route of entry into the cell for

TLF-1, poorly characterized alternative routes appear to exist

for both TLF-1 and TLF-2, a second HDL particle that also

exhibits trypanolytic activity [6]. Finally, an in vitro study has

demonstrated that, regardless of receptor function, Tbg1 may be

inherently resistant to apoL-1, the active trypanolytic factor in

human serum [10]. While HpHbR may only be one component

of Tbg1 serum resistance, the possible benefit of designing new

drugs targeted to this receptor variant warrants further functional

study to fully circumscribe its effect on serum resistance.

In contrast to Tbg1, the mechanism of Tbg2 resistance to human

serum is thought to be independent of HpHbR, based on the

finding that HpHbR from Tbg2 internalizes TLF-1 at a rate

similar to that observed in Tbb and Tbr [10]. While that study

included just a single strain of Tbg2 (STIB386), our results, which

include data for several additional strains, suggest that this

conclusion is likely to hold more broadly in Tbg2. Sequencing of

HpHbR indicated that several isolates of Tbg2 shared sequence

identity with isolates of both Tbb and Tbr, while exhibiting no

overlap with isolates of Tbg1, a result that is consistent with

previous surveys of neutral genetic markers [13,17]. The genetic

similarity of HpHbR observed among a large collection of isolates

of Tbb, Tbr, and Tbg2 suggests that the function of HpHbR in Tbg2

is more likely to reflect that of Tbb and Tbr than Tbg1 and further

supports the conclusion that Tbg2 serum resistance is independent

of HpHbR. Our study surveyed only five strains of Tbg2, but even

these five strains exhibited substantially more diversity than Tbg1

at both the nucleotide and amino acid level. The genetic

variability of HpHbR in Tbg2 reiterates the fact that Tbg2, unlike

Tbg1, is not genetically homogeneous and suggests that future

studies should consider this diversity when examining functional

differences among parasite subgroups.

Supporting Information

Figure S1 Amino acid alignment of the complete
HpHbR gene. Amino acids are identified by a unique color

and a single letter abbreviation at the top of the figure. Letters at

left identify unique amino acid sequences shown in Figure 1b. An

asterisk (*) indicates that multiple isolates share the same amino

acid sequence (see Table S1). Variable positions are highlighted

below the alignment.

(EPS)

File S1 This file contains the DNA sequences from each
of the alleles identified in this study. Allele sequences were

inferred from direct sequences in silico using the program PHASE

2.1.1 (Stephens et al. 2001).

(FAS)

Table S1 Subgenus Trypanozoon isolate taxonomic
classification, collection information and characteriza-
tion of genetic variation at the HpHbR locus.

(DOCX)
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