59 research outputs found

    Epidermal Langerhans Cells-A Target for HTLV-III/LAV Infection

    Get PDF
    Langerhans cells (LC) are bone marrow-derived, la+, CD1+, CD4+, ATPase+ dendritic antigen-presenting cells within the human epidermis. Since the CD4 molecule has been implicated as a receptor structure for HTLV-III/LAV (human T-cell leukemia virus/lymphadenopathy-associated virus), we asked whether LC from HTLV-III/LAV-seropositive individuals display signs of HTLV-III/LAV infection. In skin biopsies from 7/40 HTLV-III/LAV-infected persons (1 asymptomatic carrier, 2 patients with acquired immunodeficiency syndrome (AIDS)-related complex and 4 patients with AIDS), LC were the only epidermal cells to react with a monoclonal antibody specific for the HTLV-III core protein p17. A varying percentage of p17+ LC were morphologically altered with blunt dendrites and poorly demarcated cellular contours. In one of these biopsies, the presence of LC-associated viral particles characteristic of HTLV-III/LAV as well as cytopathic changes in approximately one-third of the LC population were demonstrated by electron microscopy. These results strongly suggest that LC may harbor HTLV-III/LAV. The infection of LC with this retrovirus may have deleterious consequences for the immunologic functions of this cell system and may thus contribute to both the acquisition of immunodeficiency and the infectious and neoplastic complications of AIDS

    Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus

    Get PDF
    The NKG2D receptor stimulates natural killer cell and T cell responses upon engagement of ligands associated with malignancies and certain autoimmune diseases. However, conditions of persistent NKG2D ligand expression can lead to immunosuppression. In cancer patients, tumor expression and shedding of the MHC class I–related chain A (MICA) ligand of NKG2D drives proliferative expansions of NKG2D+CD4+ T cells that produce interleukin-10 (IL-10) and transforming growth factor-β, as well as Fas ligand, which inhibits bystander T cell proliferation in vitro. Here, we show that increased frequencies of functionally equivalent NKG2D+CD4+ T cells are inversely correlated with disease activity in juvenile-onset systemic lupus erythematosus (SLE), suggesting that these T cells may have regulatory effects. The NKG2D+CD4+ T cells correspond to a normally occurring small CD4 T cell subset that is autoreactive, primed to produce IL-10, and clearly distinct from proinflammatory and cytolytic CD4 T cells with cytokine-induced NKG2D expression that occur in rheumatoid arthritis and Crohn's disease. As classical regulatory T cell functions are typically impaired in SLE, it may be clinically significant that the immunosuppressive NKG2D+CD4+ T cells appear functionally uncompromised in this disease

    Adenovirus vector delivery stimulates natural killer cell recognition

    Get PDF
    We report that delivery of first-generation replication-deficient adenovirus (RDAd) vectors into primary human fibroblasts is associated with the induction of natural killer (NK) cell-mediated cytolysis in vitro. RDAd vector delivery induced cytolysis by a range of NK cell populations including the NK cell clone NKL, primary polyclonal NK lines and a proportion of NK clones (36 %) in autologous HLA-matched assays. Adenovirus-induced cytolysis was inhibited by antibody blocking of the NK-activating receptor NKG2D, implicating this receptor in this function. NKG2D is ubiquitously expressed on NK cells and CD8+ T cells. Significantly, γ-irradiation of the vector eliminated the effect, suggesting that breakthrough expression from the vector induces at least some of the pro-inflammatory responses of unknown aetiology following the application of RDAd vectors during in vivo gene delivery

    Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach

    Get PDF
    Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms

    Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach

    Get PDF
    Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms

    Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15

    Get PDF
    IL-15 and NKG2D promote autoimmunity and celiac disease by arming cytotoxic T lymphocytes (CTLs) to cause tissue destruction. However, the downstream signaling events underlying these functional properties remain unclear. Here, we identify cytosolic phospholipase A2 (cPLA2) as a central molecule in NKG2D-mediated cytolysis in CTLs. Furthermore, we report that NKG2D induces, upon recognition of MIC+ target cells, the release of arachidonic acid (AA) by CTLs to promote tissue inflammation in association with target killing. Interestingly, IL-15, which licenses NKG2D-mediated lymphokine killer activity in CTLs, cooperates with NKG2D to induce cPLA2 activation and AA release. Finally, cPLA2 activation in intraepithelial CTLs of celiac patients provides an in vivo pathophysiological dimension to cPLA2 activation in CTLs. These results reveal an unrecognized link between NKG2D and tissue inflammation, which may underlie the emerging role of NKG2D in various immunopathological conditions and define new therapeutic targets

    Gα<sub>i</sub> Proteins are Indispensable for Hearing

    Get PDF
    Background/Aims: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary (“hair”) bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. Methods: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. Results: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. Conclusion: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore