6,573 research outputs found

    Advice and Indecision Canada and the Cuban Missile Crisis

    Get PDF

    Mercurian impact ejecta: Meterorites and mantle

    Full text link
    We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study (1) meteorite transfer to Earth, and (2) re-accumulation of an expelled mantle in giant-impact scenarios seeking to explain Mercury's large core. In the context of meteorite transfer, we note that Mercury's impact ejecta leave the planet's surface much faster (on average) than other planet's in the Solar System because it is the only planet where impact speeds routinely range from 5-20 times the planet's escape speed. Thus, a large fraction of mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth-crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr and show that several percent of the high-speed ejecta reach Earth (a factor of -3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. Similar quantities of material reach Venus. These calculations also yield measurements of the re-accretion time scale of material ejected from Mercury in a putative giant impact (assuming gravity is dominant). For mercurian ejecta escaping the gravitational reach of the planet with excess speeds equal to Mercury's escape speed, about one third of ejecta re-accretes in as little as 2 Myr. Thus collisional stripping of a silicate proto-mercurian mantle can only work effectively if the liberated mantle material remains in small enough particles that radiation forces can drag them into the Sun on time scale of a few million years, or Mercury would simply re-accrete the material.Comment: 14 pages. Submitted to Meteoritics and Planetary Scienc

    Pencil-Beam Surveys for Faint Trans-Neptunian Objects

    Get PDF
    We have conducted pencil-beam searches for outer solar system objects to a limiting magnitude of R ~ 26. Five new trans-neptunian objects were detected in these searches. Our combined data set provides an estimate of ~90 trans-neptunian objects per square degree brighter than ~ 25.9. This estimate is a factor of 3 above the expected number of objects based on an extrapolation of previous surveys with brighter limits, and appears consistent with the hypothesis of a single power-law luminosity function for the entire trans-neptunian region. Maximum likelihood fits to all self-consistent published surveys with published efficiency functions predicts a cumulative sky density Sigma(<R) obeying log10(Sigma) = 0.76(R-23.4) objects per square degree brighter than a given magnitude R.Comment: Accepted by AJ, 18 pages, including 6 figure

    A Derivation of the Luminosity Function of the Kuiper Belt from a Broken Power-Law Size Distribution

    Full text link
    We have derived a model of the Kuiper belt luminosity function exhibited by a broken power-law size distribution. This model allows direct comparison of the observed luminosity function to the underlying size distribution. We discuss the importance of the radial distribution model in determining the break diameter. We determine a best-fit break-diameter of the Kuiper belt size-distribution of 30<Db<90 km via a maximum-likelihood fit of our model to the observed luminosity function. We also confirm that the observed luminosity function for m(R) ~ 21-28 is consistent with a broken power-law size distribution, and exhibits a break at m(R)=26.0+0.7-1.8.Comment: Accepted by Icarus 25 pages, 2 tables, 2 figure
    corecore