12 research outputs found

    A role for non-B DNA forming sequences in mediating microlesions causing human inherited disease

    Get PDF
    Missense/nonsense mutations and micro-deletions/micro-insertions of <21bp together represent ~76% of all mutations causing human inherited disease. Previous studies have shown that their occurrence is influenced by sequences capable of non-B DNA formation (direct, inverted and mirror repeats; G-quartets). We found that a greater than expected proportion (~21%) of both micro-deletions and micro-insertions occur within direct repeats and are explicable by slipped misalignment. A novel mutational mechanism, non-B DNA triplex formation followed by DNA repair, is proposed to explain ~5 % of micro-deletions and micro-insertions at mirror repeats. Further, G-quadruplex-forming sequences, direct and inverted repeats appear to play a prominent role in mediating missense mutations, whereas only direct and inverted repeats mediate nonsense mutations. We suggest a mutational mechanism involving slipped strand mispairing, slipped structure formation and DNA repair, to explain ~15% of missense and ~12% of nonsense mutations leading to the formation of perfect direct repeat s from imperfect repeats, or to the extension of existing direct repeats. Similar proportions of missense and nonsense mutations were explicable by the mechanism of hairpin loop formation and DNA repair leading to the formation of perfect inverted repeats from imperfect repeats. The proposed mechanisms provide new insights into mutagenesis underlying pathogenic micro-lesions

    References

    No full text
    corecore