72 research outputs found

    HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness

    Get PDF
    High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified HNRNPM as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and back-splicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM dependent linear splicing events using splice-switching-antisense-oligonucleotides (SSOs) was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors

    MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

    Get PDF
    Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood., negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB

    MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

    Get PDF
    Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility. © 2021, The Author(s)

    Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology

    Get PDF
    Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology. © 2013 Mohan et al

    Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions

    Get PDF
    Maintaining undifferentiated mouse embryonic stem cell (mESC) culture has been a major challenge as mESCs cultured in Leukemia Inhibitory Factor (LIF) conditions exhibit spontaneous differentiation, fluctuating expression of pluripotency genes, and genes of specialized cells. Here we show that, in sharp contrast to the mESCs seeded on the conventional rigid substrates, the mESCs cultured on the soft substrates that match the intrinsic stiffness of the mESCs and in the absence of exogenous LIF for 5 days, surprisingly still generated homogeneous undifferentiated colonies, maintained high levels of Oct3/4, Nanog, and Alkaline Phosphatase (AP) activities, and formed embryoid bodies and teratomas efficiently. A different line of mESCs, cultured on the soft substrates without exogenous LIF, maintained the capacity of generating homogeneous undifferentiated colonies with relatively high levels of Oct3/4 and AP activities, up to at least 15 passages, suggesting that this soft substrate approach applies to long term culture of different mESC lines. mESC colonies on these soft substrates without LIF generated low cell-matrix tractions and low stiffness. Both tractions and stiffness of the colonies increased with substrate stiffness, accompanied by downregulation of Oct3/4 expression. Our findings demonstrate that mESC self-renewal and pluripotency can be maintained homogeneously on soft substrates via the biophysical mechanism of facilitating generation of low cell-matrix tractions

    Genetics of human hydrocephalus

    Get PDF
    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions

    Heavy and light roles: myosin in the morphogenesis of the heart

    Get PDF
    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Altered expression of the two naturally occurring human insulin receptor variants in isolated adipocytes of non-insulin-dependent diabetes mellitus patients

    No full text
    The human insulin receptor gene is expressed in two variant isoforms which differ by the absence (HIR-A) or presence (HIR-B) of 12 amino acids in the COOH-terminus of the extracellular alpha-subunit as a consequence of alternative splicing of exon 11. Expression of the two variant isoforms is regulated in a tissue-specific manner. In this study, we have measured the levels of the two receptor variants in isolated adipocytes from 10 non-insulin-dependent diabetes mellitus (NIDDM) and 11 normal subjects using an immunological assay, based on the ability of a human anti-receptor autoantibody to discriminate between HIR-A and HIR-B. Results indicate that levels of HIR-B variant are increased in NIDDM patients

    Altered expression of the two naturally occurring human insulin receptor variants in isolated adipocytes of non-insulin-dependent diabetes mellitus patients

    No full text
    The human insulin receptor gene is expressed in two variant isoforms which differ by the absence (HIR-A) or presence (HIR-B) of 12 amino acids in the COOH-terminus of the extracellular alpha-subunit as a consequence of alternative splicing of exon 11. Expression of the two variant isoforms is regulated in a tissue-specific manner. In this study, we have measured the levels of the two receptor variants in isolated adipocytes from 10 non-insulin-dependent diabetes mellitus (NIDDM) and 11 normal subjects using an immunological assay, based on the ability of a human anti-receptor autoantibody to discriminate between HIR-A and HIR-B. Results indicate that levels of HIR-B variant are increased in NIDDM patients
    corecore