461 research outputs found

    Foliar herbivory on plants creates soil legacy effects that impact future insect herbivore growth via changes in plant community biomass allocation

    Get PDF
    1. Plants leave legacy effects in the soil they grow in, which can drive important vegetation processes, including productivity, community dynamics and species turnover. Plants at the same time also face continuous pressure posed by insect herbivores. Given the intimate interactions between plants and herbivores in ecosystems, plant identity and herbivory are likely to interactively shape soil legacies. However, the mechanisms that drive such legacy effects on future generations of plants and associated herbivores are little known.2. In a greenhouse study, we exposed 10 common grasses and non-leguminous forbs individually to insect herbivory by two closely related noctuid caterpillars, Mamestra brassicae and Trichoplusia ni (Lepidoptera: Noctuidae) or kept them free of herbivores. We then used the soil legacies created by these plant individuals to grow a plant community composed of all 10 plant species in each soil and exposed these plant communities to M. brassicae. We measured conditioning plant biomass, soil respiration and chemistry of the conditioned soils, as well as individual plant, plant community and herbivore biomass responses.3. At the end of the conditioning phase, soils with herbivore legacies had higher soil respiration, but only significantly so for M. brassicae. Herbivore legacies had minimal impacts on community productivity. However, path models reveal that herbivore-induced soil legacies affected responding herbivores through changes in plant community shoot: root ratios. Soil legacy effect patterns differed between functional groups. We found strong plant species and functional group-specific effects on soil respiration parameters, which in turn led to plant community shifts in grass: forb biomass ratios. Soil legacies were negative for the growth of plants of the same functional group.4. Synthesis. We show that insect herbivory, plant species and their functional groups, all incur soil microbial responses that lead to subtle (herbivory) or strong (plants and their functional group) effects in response plant communities and associated polyphagous herbivores. Hence, even though typically ignored, our study emphasizes that legacies of previous insect herbivory in the soil can influence current soil–plant–insect community interactions.Plant science

    Observational Constraints of Modified Chaplygin Gas in Loop Quantum Cosmology

    Full text link
    We have considered the FRW universe in loop quantum cosmology (LQC) model filled with the dark matter (perfect fluid with negligible pressure) and the modified Chaplygin gas (MCG) type dark energy. We present the Hubble parameter in terms of the observable parameters Ωm0\Omega_{m0}, Ωx0\Omega_{x0} and H0H_{0} with the redshift zz and the other parameters like AA, BB, CC and α\alpha. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ2\chi^{2} test. The best-fit values of the parameters are obtained by 66%, 90% and 99% confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (B,CB,C) by fixing some other parameters α\alpha and AA. From the best fit of distance modulus ÎŒ(z)\mu(z) for our theoretical MCG model in LQC, we concluded that our model is in agreement with the union2 sample data.Comment: 14 pages, 10 figures, Accepted in EPJC. arXiv admin note: text overlap with arXiv:astro-ph/0311622 by other author

    HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn's Disease

    Get PDF
    Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies.This article is freely available via Open Access. Click on Publisher URL to access the full-text

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
    • 

    corecore