129 research outputs found

    Kank family proteins comprise a novel type of talin activator

    Get PDF

    Nascent Adhesions: From Fluctuations to a Hierarchical Organization

    Get PDF
    SummaryIntegrins assemble a complex network of molecular interactions at cell–matrix adhesion sites. Fluorescence correlation microscopy has now shed light on the spatial, temporal and numerical distributions of protein complexes during assembly and stabilization of nascent adhesions

    Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: L-carnitine supplementation has been associated with a significant reduction in all-cause mortality, ventricular arrhythmia, and angina in the setting of acute myocardial infarction (MI). However, on account of strict homeostatic regulation of plasma L-carnitine concentrations, higher doses of L-carnitine supplementation may not provide additional therapeutic benefits. This study aims to evaluate the effects of various oral maintenance dosages of L-carnitine on all-cause mortality and cardiovascular morbidities in the setting of acute MI. METHODS: After a systematic review of several major electronic databases (PubMed, EMBASE, and the Cochrane Library) up to November 2013, a meta-analysis of five controlled trials (n = 3108) was conducted to determine the effects of L-carnitine on all-cause mortality and cardiovascular morbidities in the setting of acute MI. RESULTS: The interaction test yielded no significant differences between the effects of the four daily oral maintenance dosages of L-carnitine (i.e., 2 g, 3 g, 4 g, and 6 g) on all-cause mortality (risk ratio [RR] = 0.77, 95% CI [0.57-1.03], P = 0.08) with a statistically insignificant trend favoring the 3 g dose (RR = 0.48) over the lower 2 g dose (RR = 0.62), which was favored over the higher 4 g and 6 g doses (RR = 0.78, 0.78). There was no significant differences between the effects of the daily oral maintenance dosages of 2 g and 6 g on heart failure (RR = 0.53, 95% CI [0.25-1.13], P = 0.10), unstable angina (RR = 0.90, 95% CI [0.51-1.58], P = 0.71), or myocardial reinfarction (RR = 0.74, 95% CI [0.30-1.80], P = 0.50). CONCLUSIONS: There appears to be no significant marginal benefit in terms of all-cause mortality, heart failure, unstable angina, or myocardial reinfarction in the setting of acute MI for oral L-carnitine maintenance doses of greater or less than 3 g per day

    Kank family proteins comprise a novel type of talin activator

    Get PDF

    Mixline: A Hybrid Reinforcement Learning Framework for Long-horizon Bimanual Coffee Stirring Task

    Full text link
    Bimanual activities like coffee stirring, which require coordination of dual arms, are common in daily life and intractable to learn by robots. Adopting reinforcement learning to learn these tasks is a promising topic since it enables the robot to explore how dual arms coordinate together to accomplish the same task. However, this field has two main challenges: coordination mechanism and long-horizon task decomposition. Therefore, we propose the Mixline method to learn sub-tasks separately via the online algorithm and then compose them together based on the generated data through the offline algorithm. We constructed a learning environment based on the GPU-accelerated Isaac Gym. In our work, the bimanual robot successfully learned to grasp, hold and lift the spoon and cup, insert them together and stir the coffee. The proposed method has the potential to be extended to other long-horizon bimanual tasks.Comment: 10 pages, conferenc

    CDK6 and miR-320c Co-Regulate Chondrocyte Catabolism Through NF-κB Signaling Pathways

    Get PDF
    Background/Aims: Cyclin-dependent kinase 6 (CDK6) regulates inflammatory response and cell differentiation. This study sought to determine whether CDK6 and miR-320c co-regulate chondrogenesis and inflammation. Methods: Utilizing quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), CDK6 and miR-320c expression were assessed in a micromass culture of human bone mesenchymal stem cells that underwent chondrogenesis in vitro as well as in chondrocytes from E16.5 mouse forelimbs. Normal chondrocytes were transfected with miR-320c mimic, miR-320c inhibitor, or CDK6-siRNA. Luciferase reporter assay results confirmed that miR-320c directly targets CDK6 by interacting with the 3′-untranslated region (3′-UTR) of its mRNA. qRT-PCR, Western blotting, and Cell Counting Kit-8 were subsequently used to evaluate the effects of miR-320c overexpression and CDK6 inhibition on inflammatory factor expression, as well as to investigate the effects of NF-kB and MAPK signaling pathway activation on IL-1β-induced chondrocyte inflammation. Results: Our results show that miR-320c expression increased during the middle stage and decreased during the late stage of hBMSC chondrogenic differentiation. In contrast, CDK6 expression decreased during the middle stage and increased during the late stage of hBMSC chondrogenic differentiation. Moreover, CDK6 expression increased in severe OA cartilage and in hypertrophic chondrocytes of mouse forelimbs at E16.5. Results of the luciferase reporter assay showed that miR-320c modulated CDK6 expression by binding to the 3′-UTR of its mRNA. miR-320c overexpression and CDK6 inhibition repressed IL-1β-induced expression of inflammatory factors and regulated the NF-kB signaling pathway. Conclusion: CDK6 and miR-320c co-regulate hBMSC chondrogenesis and IL-1β-induced chondrocyte inflammation through the NF-kB signaling pathway, suggesting that miR-320c and CDK6 inhibitors can be used to repress catabolism in human chondrocytes

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore