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1 Introduction

With the rapid development of global economy, the demand for oil and gas resources

keeps rising, unconsolidated sandstone reservoirs occupy a very important position in

China’s oil and gas resources (Wang et al., 2010) (Zhang, 2021) (Yan et al., 2021). In the

process of drilling and producing oil in unconsolidated sandstone reservoir, the stress and

pore pressure around the oil production cavity will be redistributed, which will cause

serious problems such as sand production in the production stage (Wang et al., 2022).

Sand production not only damages borehole integrity, but also leads to reduced oil and gas

production, equipment corrosion and impact on production safety during production

(Ahad et al., 2020) (Song et al., 2021). Due to the existence of the above negative effects,

the exploitation cost of unconsolidated sandstone reservoir is further improved, so it is

particularly important to conduct reliable sand production prediction research

(Shabdirova et al., 2019) (Zivar et al., 2019).

At present, the research on sand production prediction of unconsolidated sandstone

mainly focuses on two aspects, namely laboratory experimental research and numerical

simulation research. Laboratory experimental studies mostly use a single large cylindrical

artificial sandstone specimen for diagenesis and combine electrorheological probes (ER

Probes) or high-pressure consolidation system (HPCS) to simulate the sand behavior,

from the overall or macro perspective to simulate the sand law, but it is difficult to reveal

the microscopic nature andmechanism of particle migration and sand production process

(Zhang et al., 2015; Kozhagulova et al., 2020a; Kozhagulova et al., 2020b). Meanwhile,

sand production in oil wells is closely related to mechanical behavior and rock properties

of sandstone reservoir (Fattahpour et al., 2012). Because of the complex mineral

composition and low cementation strength of unconsolidated sandstone reservoir, it

is more difficult to predict sand production by laboratory experiments.

To better simulate and predict sand production, many scholars have shifted their

research focus to numerical simulation methods (Cao et al., 2021; Liu et al., 2022).

Therefore, this article discussed the current research status of numerical simulation
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methods for prediction of sand production in unconsolidated

sandstone, analyzes the shortcomings of various methods, and

puts forward suggestions for further research, so as to provide

reference and theoretical support for sand production prediction

and sand control design in the development of unconsolidated

sandstone reservoirs.

2 Numerical simulation methods for
sand production prediction

The accurate prediction of unconsolidated sandstone sand

production in the production process plays a significant role in

the level of oil and gas production. There are four kinds of

numerical simulation methods, namely finite element method,

finite difference method, discrete element method and discrete

element-finite element hybrid method.

2.1 Finite element method

The finite element method mainly includes critical

drawdown pressure difference evaluation, equivalent plastic

strain analysis, thick wall cylinder calculation and prediction

of sand production (Papamichos et al., 2010; Liu and Liu, 2018)

(Garolera et al., 2020; Li et al., 2018).

2.1.1 Critical drawdown pressure difference
evaluation

This method uses the true triaxial stress chamber (TTSC) to

simulate the single-hole sanding behavior under true triaxial

stress and fluid flow conditions and is verified by the finite

element software ABAQUS (Younessi et al., 2013). Studies

suggest that there is a critical drawdown pressure difference to

induce sand production in the sand producing area around the

borehole (Song et al., 2022). The failure prediction under true

triaxial stress state is more accurate than Drucker-Prager (Al-

Ajmi and Zimmerman, 2005; Al-Ajmi and Zimmerman, 2006)

and has a stronger correlation with the experimental results.

However, the numerical model does not consider the plastic

strain law, and the sample is in an ideal state after yielding, which

deviates from the actual value.

2.1.2 Equivalent plastic strain analysis
Since the 1990s, some scholars have introduced the

equivalent plastic strain to analyze the sand production

conditions and sand production, thereby improving the

accuracy of sand production prediction, Figure 1B. (Morita

et al., 1989; Bai et al., 2012). Volonte et al. established a

reliable workflow through finite element modeling to estimate

the actual sanding conditions (Volonté et al., 2010). As shown in

Figure 1A, the rock failure around the perforation is evaluated by

analyzing the distribution of equivalent plastic strain, and the

Cosserat continua is introduced to simulate the slit type of failure

around the borehole, so as to achieve the purpose of sand

production prediction (Muller et al., 2011; Saski et al., 2021).

Gui et al. (2016) further improved the accuracy of this method by

combining core experiment and field experiment.

2.1.3 Thick wall cylinder calculation
Santana and Likrama proposed a workflow for optimal

matching between laboratory tests and finite element model

simulation results (Santana and Likrama, 2016). In this

method, the finite element model under the same test is

developed by testing the experimental curve of thick-walled

cylinder (TWC) to calibrate the strength and plasticity of the

material. When the numerical test values match the experimental

results, the failure threshold is determined according to the

critical equivalent plastic strain to simulate the failure near

the wellbore during production (Deng et al., 2019).

2.1.4 Prediction of sand production
Prediction of sand production is by considering the erosion

process of coupling finite element method, by simulating the

fluid flow phenomenon, to observe the sand erosion process, and

then to predict the amount of sand in the wellbore (Servant et al.,

2006). This method can reproduce the process of an erosion

front, and the proposed finite element numerical model does not

depend on specific erosion pattern, which is reproducible. The

amount of sand is mainly affected by the degree of erosion and

finite element time step and mesh refinement (Liu, 2012; Pak and

Pak, 2020).

2.2 Finite difference method

Based on erosion criterion (Vardoulakis et al., 1996)

(Papamichos et al., 2001), Detournay et al. (2006) proposed a

sand production prediction to study the onset and rate of sand

production by using the finite difference model. Rahmati et al.

(2012) extended Detournay’s mechanical-erosion model with

strain hardening/softening Mohr-Coulomb yield surface and

fracture energy regularization technique (Nouri et al., 2009),

which reduced the mesh dependence of strain results to a certain

extent, and introduced erosion coefficient K to improve the

accuracy of sand production prediction, as shown in

Figure 1B. Shahsavari et al. (2021) further reduced the

negative impact of mesh size on sand production prediction

by combining hollow cylinder sand production experiment and

finite difference program on the basis of predecessors.

2.3 Discrete element method

The discrete element method includes three aspects: Coupled

Lattice-Boltzmann andMethodDiscrete ElementMethod (LBM-
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DEM), Coupled Computational Fluid Dynamic and Discrete

Element Method (CFD-DEM), Coupled Discrete Element

Method and Fluid Flow Model (DEM-FFM) (Wang et al.,

2016; Rakhimzhanova et al., 2021; Zhang et al., 2022).

2.3.1 Coupled Lattice-Boltzmann and method-
discrete element method

LBM code in LBM-DEM coupling method simulates fluid

flow in each time step, and DEM is used to determine the

particle position. Through the two-dimensional numerical

simulation of fluid flow in deformable particulate media

comprising of movable circular particles, the sand

production phenomenon in weakly cemented sandstone

reservoirs can be simulated. Also, can be used to study the

basic mechanism of sand production on an experimental scale

(Ghassemi and Pak, 2015; Han and Cundall, 2017) and

analyze the permeability before and after sand production

and the evolution process of the complex force chain network

inside the model (Xia et al., 2022). On the basis of

predecessors, Honari et al. simulated different stages of

sand production by integrating Immersion Moving

Boundary (IMB) method, including scale effect, extension

of failure zone under incremental stress, and stress change

during particle erosion (Honari and Hosseininia, 2021). The

study believed that the smaller the pore diameter and the

greater the stress value, the easier the sand production.

2.3.2 Coupled computational fluid dynamic and
discrete element method

The coupling CFD-DEM model is used to study the sand

production time, sand production amount and particle migration

in the perforation damage zone of weakly cemented sand body

under different fluid flow condition (Song et al., 2020; Khamitov

et al., 2021). Then, the sand production of different fluid types is

coupled (Khamitov et al., 2022). It is found that the stripped sand

particles are mostly clustered or blocky, and the strength of sand

body and fluid velocity are the key factors to determine whether

to produce sand. Under the influence of fluid flow, the compacted

core will release particles to the perforation location, and then

produce transient sand retention. Ismail et al. extended the CFD-

FIGURE 1
Numerical simulation methods for sand production prediction of unconsolidated sandstone. (A) corresponds to the numerical simulation
results of equivalent plastic strain analysis, (B) corresponds to the numerical simulation results of finite difference method, (C) corresponds to the
coupled discrete element method and fluid flow model, and (D) corresponds to the discrete element-finite element hybrid method.
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DEM coupling model to the study of screen sand consolidation

and analyzed the influence of key parameters such as fluid

velocity and particle size ratio on sand retention effect. The

research results show that the method can better predict the sand

production observed in the experiment (Ismail et al., 2021; Ismail

et al., 2022).

2.3.3 Coupled discrete element method and
fluid flow model

The DEM-FFM coupling model uses the particle flow code

(PFC) developed by ITACSA to calculate by the discrete

element method. The particles in the software are rigid and

can overlap. The time steps calculated by the discrete element

method correspond to the boundary conditions in PFC3D.

The influence of boundary stress and fluid pressure on the

spalling and sand production of sandstone particles is

simulated by updating the variations of permeability and

porosity change (Cui et al., 2016), as shown in Figure 1C.

The research shows that the high boundary stress and seepage

force plays a major role in the sand production process, and

lead to the redistribution of stress, which makes the plastic

area near the wellbore asymmetrically distributed and

aggravates the sand production behavior. After that, Zhao

et al. (2020) built a discrete element model based on the

PFC3D platform and made a quantitative analysis of sand

production.

2.4 Discrete element-finite element hybrid
method

Wu and Choi based on the hybrid discrete element-finite

model (DE-FE), use the strength of cementing materials, the

degree of cementation between particles, and the property of pore

fluid to evaluate the formation of pore types, the evolution of

sand production volume and sand production rate, and whether

the sand production is continuous (Wu and Choi, 2012). When

the cementation between particles is destroyed, particles will

separate from sandstone and flow out from the tip of the cavity

through the fluid, as shown in Figure 1D. If the degree of

cementation is poor, the toughness and permeability are high

enough, the drag force of pore fluid is enough to cause bond

failure, and the detached sandstone particles gather toward the

borehole center, resulting in continuous sanding (Zhou et al.,

2011).

3 Analysis and discussion

1) Finite element method and finite difference method are

based on continuum mechanics. The strength and elastic

properties of the numerical model can be obtained by

laboratory tests, which is suitable for large-scale sand

production prediction, but cannot capture local sand

production phenomena.

2) The discrete element method can capture the motion,

interaction and micro-failure mechanism of a single sand

particle in the dynamic process, but it cannot be used for

large-scale calculation and the calibration of model

parameters is difficult. The calibration of parameters is not

unique, and the micro properties cannot be determined by

laboratory specimens.

3) The discrete element-finite element hybrid method can use

the continuum theory to simulate the small deformation

away from the wellbore, and the sand production behavior

near the wellbore can be analyzed by using the

discontinuous characteristics of discrete element. This

method increases the accuracy of sand production

prediction, but there are few related studies, most of

which are still based on finite element method or

discrete element method.

4) Discrete software PFC can simulate the discontinuous

characteristics of rock and reproduce the separation

phenomenon of single sand particle from rock matrix. The

establishment of numerical model and parameter calibration

are relatively simple, and the calculation amount is small,

which has high sand production prediction accuracy (Cui

et al., 2016; Zhao et al., 2020) (Rahmati et al., 2013)

(Shirinabadi et al., 2016).

4 Conclusion

1) Accurate prediction of loose sandstone sand production

has always been the focus of domestic and foreign

scholars. From the perspective of numerical simulation,

this paper summarizes the current research progress of

numerical simulation methods, and analyzes the

advantages and disadvantages of various methods, in

order to provide research direction for future sand

production prediction.

2) The finite element method may consider developing special

numerical elements to characterize the effect of perforation

geometry on sand production during perforation. The finite

difference method uses the fracture energy regularization

technique to extend the mechanical-erosion criterion and

reduce the dependence of the fluid on the grid. In the future,

the sand deposition after compression can be considered to

further improve the prediction accuracy of sand production.

The discrete element method can correlate the microscopic

parameters of rock with macroscopic properties and realize

the calibration of microscopic parameters of 3D DEM

models. Due to the poor applicability of fluid flow at the

perforation tip in the current 3D discrete element

perforation test simulation, the reliability of the fluid

simulation results at the perforation tip can be improved
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by introducing the discrete element-finite element hybrid

method, considering the cementation state between

particles, and providing reference for sand production

prediction.

3) Although the discrete software PFC has high precision in sand

prediction, there are still some calculation errors. In the future,

based on the interface provided by the discrete software PFC,

combined with the C++ language, a discrete contact model

suitable for unconsolidated sandstone is established to further

improve the accuracy of sand production prediction.
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