65 research outputs found

    Modulation of the glyoxalase system in the aging model Podospora anserina : effects on growth and lifespan

    Get PDF
    The eukaryotic glyoxalase system consists of two enzymatic components, glyoxalase I (lactoylglutathionelyase) and glyoxalase II (hydroxyacylglutathione hydrolase). These enzymes are dedicated to the removal of toxic alpha-oxoaldehydes like methylglyoxal (MG). MG is formed as a by-product of glycolysis and MG toxicity results from its damaging capability leading to modifications of proteins, lipids and nucleic acids. An efficient removal of MG appears to be essential to ensure cellular functionality and viability. Here we study the effects of the genetic modulation of genes encoding the components of the glyoxalase system in the filamentous ascomycete and aging model Podospora anserina. Overexpression of PaGlo1 leads to a lifespan reduction on glucose rich medium, probably due to depletion of reduced glutathione. Deletion of PaGlo1 leads to hypersensitivity against MG added to the growth medium. A beneficial effect on lifespan is observed when both PaGlo1 and PaGlo2 are overexpressed and the corresponding strains are grown on media containing increased glucose concentrations. Notably, the double mutant has a ‘healthy’ phenotype without physiological impairments. Moreover, PaGlo1/PaGlo2_OEx strains are not long-lived on media containing standard glucose concentrations suggesting a tight correlation between the efficiency and capacity to remove MG within the cell, the level of available glucose and lifespan. Overall, our results identify the up-regulation of both components of the glyoxalase system as an effective intervention to increase lifespan in P. anserina. Key words: Podospora anserina, aging, lifespan, glycation, glucose, methylglyoxal, advanced glycation end product

    Проблема безробіття в Україні

    Get PDF

    Seroprevalence of Schmallenberg virus infection in sheep and goats flocks in Germany, 2012-2013

    Get PDF
    Schmallenberg virus (SBV) is a member of the family Bunyaviridae and mainly affects ruminants. It is transmitted by biting midges, first and foremost Culicoides spp., and causes congenital malformations reflected in arthrogryposis-hydranencephaly (AH) syndrome. The aim of this study was to collect data on the emergence of SBV as a new arthropod-borne disease introduced into Europe in 2011. Germany was located in the core region of the 2011/2012 epidemic. Following two seroprevalence studies in the north-west of Germany in 2012, this study focused on the epidemiology and distribution of SBV throughout 130 small ruminant flocks in the whole country. Blood samples were obtained of 30 animals per flock and a SBV-specific questionnaire was used to collect operating data of the farms. The median within-herd seroprevalence for all 130 flocks tested was 53.3% with a total range from 0% to 100%. The median within-herd seroprevalence for goats was 30% [interquartile range (IQR): 40.3%] and 57% for sheep (IQR: 43.3%). Small ruminant flocks kept permanently indoors or housed overnight had a significantly lower seroprevalence than flocks kept permanently outdoors. In addition, this study revealed a significantly lower seroprevalence in the north-east of Germany. These results show that small ruminants in Germany are still at risk of contracting new SBV infections following incomplete seroconversion of flocks especially in the north-east of Germany. This might contribute to SBV becoming enzootic in central and northern Europe. Furthermore, the survey revealed that housing animals at least during mating and early pregnancy may reduce the risk of new SBV infections and may thus be an option to reduce losses as long as there is no licensed vaccine available on the German market

    The Proto-Magnetar Model for Gamma-Ray Bursts

    Full text link
    Long duration Gamma-Ray Bursts (GRBs) originate from the core collapse of massive stars, but the identity of the central engine remains elusive. Previous work has shown that rapidly spinning, strongly magnetized proto-neutron stars (`millisecond proto-magnetars') produce outflows with energies, timescales, and magnetizations sigma_0 (maximum Lorentz factor) that are consistent with those required to produce long GRBs. Here we extend this work in order to construct a self-consistent model that directly connects the properties of the central engine to the observed prompt emission. Just after the launch of the supernova shock, a wind heated by neutrinos is driven from the proto-magnetar. The outflow is collimated into a bipolar jet by its interaction with the star. As the magnetar cools, the wind becomes ultra-relativistic and Poynting-flux dominated (sigma_0 >> 1) on a timescale comparable to that required for the jet to clear a cavity through the star. Although the site and mechanism of the prompt emission are debated, we calculate the emission predicted by two models: magnetic dissipation and internal shocks. Our results favor the magnetic dissipation model in part because it predicts a relatively constant `Band' spectral peak energy E_peak with time during the GRB. The jet baryon loading decreases abruptly when the neutron star becomes transparent to neutrinos at t ~ 10-100 seconds. Jets with ultra-high magnetization cannot effectively accelerate and dissipate their energy, suggesting this transition ends the prompt emission and may explain the steep decay phase that follows. We assess several phenomena potentially related to magnetar birth, including low luminosity GRBs, thermal-rich GRBs/X-ray Flashes, very luminous supernovae, and short duration GRBs with extended emission.Comment: 21 pages (plus 2 appendices), 21 figures, 1 table, now accepted to MNRA

    A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    Get PDF
    The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general
    corecore