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Abstract

The purpose of this review is to present up-to-date pharmacological, genetic and behavioral 

findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the 

focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with 

a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine and 

psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter 

and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, 

GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, 

and neuropeptide Y. Herein we sought to place the P rat’s behavioral and neurochemical 

phenotypes, and to some extent its genotype, in the context of the clinical literature. After 

reviewing the findings thus far, this paper discusses future directions for expanding the use of this 

genetic animal model of alcoholism to identify molecular targets for treating drug addiction in 

general.
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1. Alcohol Abuse and Dependence

Over half of adult Americans have a family member with an alcohol abuse or dependence 

disorder [alcohol use disorder (AUD)], although only a subset of these individuals have this 

across multiple generations [Research Society on Alcoholism (RSA), 2009, 2015]. 

Moreover, approximately 1 in 4 Americans have had an AUD during their lifetime (RSA, 

2009, 2015). The repercussions of AUDs cost the US economy nearly a quarter of a trillion 

dollars per year (RSA, 2015). Much of this is in health care costs, with AUDs being the third 

leading cause of preventable death according to the Centers for Disease Control and 

Prevention (CDC, Mokdad, Marks, Stroup, Gerberding, 2004; also see Johnson, 2010) and a 

causal relationship has been established between AUDs and at least 50 different medical 

conditions (Reed, Page, Viken, Christian, 1996; Rehm, 2011; Rehm et al., 2003).

Alcohol dependence is a chronic, progressive, relapsing disorder that advances in stages 

from experimentation to dependence (Heilig & Egli, 2006;Jupp & Lawrence, 2010; Koob, 

2009; Koob & LeMoal, 2008; Koob & Volkow, 2010; Spanagel, 2009; Volkow & Li, 2005). 

During the experimentation stage, the individual experiences the rewarding, euphoric and 

positive-reinforcing effects of alcohol consumption. These positive reinforcing effects are 

often associated with acute increases in motor and autonomic (e.g., heart rate) activity as 

well as pro-social behavior and are generally perceived, by the individual, as euphoric (i.e., 

pleasant). This learning process results in positive reinforcement; which increases the 

probability, frequency and magnitude of subsequent drinking behavior. However, with 

continued usage the individual experiences an increase in the magnitude, duration and/or 

frequency of dysphoria (as opposed to euphoria), such as anxiety, during periods without 

access to alcohol. These dysphoric effects can be physiological in nature (e.g., hangover, 

hyperthermia, tachycardia, etc.) or associated with behavioral sequelae, such as getting 

arrested for driving while intoxicated. Moreover, given this increase in dysphoria, the 

individual often seeks to relieve this state by returning to drinking alcohol, often to excess. 

Therefore, during the early stages of the disease positive reinforcement generally 

predominates, whereas during the later stages of the disease negative reinforcement 

predominates (Koob, Arends, & Le Moal, 2014; Koob, Buck et al., 2014).

Fundamentally, reinforcement results in an increase in behavior and its associated cognitive 

processes. Thus, increases in approach behavior are associated with positive reinforcement 

during initial stages of the disease, whereas increases in retreat or avoidance behavior (e.g., 

consuming alcohol upon waking to counter hangover effects) are associated with negative 

reinforcement during later stages of the disease. The roles of positive-reinforcement vs 

negative-reinforcement can also be characterized in terms of impulsive vs compulsive 

alcohol drinking (Koob, Arends, & Le Moal, 2014; Koob, Buck, et al., 2014; Koob & Le 

Moal, 2006; Koob & Le Moal, 2008). Within this construct, impulsive drinking leads to, and 

is associated with, binge drinking and intoxication (e.g., Gray & MacKillop, 2014; 

Hamilton, Felton, Risco, Lejuez, MacPherson, 2014; but see Irimia et al., 2013). However 

after chronic usage, impulsive drinking, during which an individual will putatively have 

some volitional control, will be replaced by compulsive drinking to mitigate physical and 

behavioral withdrawal from alcohol. This, in turn, leads to a preoccupation with, and an 

anticipation of, future alcohol consumption during alcohol withdrawal (Koob & Le Moal, 
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2008). Therefore, impulsive drinking and positive reinforcement predominate in the early 

stages of alcohol dependence, whereas compulsive drinking and negative reinforcement 

predominate in later stages of addiction (Koob, Arends, & Le Moal, 2014; Koob, Buck, et 

al., 2014; Koob & Le Moal, 2006; Koob & Le Moal, 2008). However, despite this general 

trend of cycles of active drinking and relapse, with a concomitant increase in alcohol, or 

drugs of abuse, intake and the development of tolerance to the effects of alcohol, or drugs of 

abuse; the progression of the disease is not necessarily linear, such that the frequency and/or 

duration a person experiences these cycles differs across individuals (e.g., Barker & Taylor, 

2014; Mackenzie, El-Gabalaway, Chou, & Sareen, 2014; Sartor, Kranzler, & Gelernter, 

2014; van Rizen & Dishion, 2014). Moreover, not all individuals who abuse alcohol, or 

drugs of abuse, need formal treatment to reduce or stop their excessive intake. For instance, 

many individuals who abused alcohol during their adolescence and emerging adulthood do 

not develop alcohol dependence.

Nevertheless, many individuals who abused alcohol during adolescence and emerging 

adulthood do develop alcohol dependence either during this developmental stage or later in 

life. Because of this, there is a strong emphasis to study the acute and long-term effects of 

alcohol and/or drug abuse during the peri-adolescent developmental window (i.e., juvenile to 

emerging adulthood) (e.g., Bell, Franklin, Hauser, & Engleman, 2013; Gulley and Juraska, 

2013; Spear, 2010, 2014; Witt, 1994, 2006, 2010). According to the National Institute on 

Alcohol Abuse and Alcoholism (NIAAA, 2012), 11% of all alcohol consumed in the U.S. is 

done so by 12 to 20 year olds and 90% of this drinking is in the form of binges. Additionaly, 

about a third of high school seniors report binge drinking during high school and ~75% of 

college students report binge drinking (Johnston, O’Malley, & Bachman, 1999). For ~30% 

of male college students (Wechsler, Lee, Kuo, & Lee, 2000; White, Kraus, & Swartzwelder, 

2006), this behavior continues into college and the magnitude of these binges often exceeds, 

by to 2- to 3-fold, threshold consumption levels [5 drinks in one sitting resulting in blood 

alcohol concentrations (BACs) of 80 mg% or higher] put forth in NIAAA’s definition of 

binge drinking (NIAAA National Advisory Council, 2004). Thus, binge drinking during 

peri-adolescence has become a serious public health concern, with research indicating it is a 

strong predictor of future alcohol-related problems in North America (Dawson, Grant, 

Stinson, & Chou, 2004; Johnston, O’Malley, Bachman, & Schulenberg, 2008; Kuntsche, 

Rehm, & Gmel, 2004; Presley, Meilman, & Lyerla, 1994; Wechsler et al., 2000; White et al., 

2006).

Other predictors of AUDs as well as their epidemiological antecedents and trajectory are the 

pattern of drinking (e.g., social vs binge vs continuous) and amount consumed (Flory, 

Lynam, Milich, Leukefield, & Clayton, 2004; Heather, Tebbutt, Mattick, & Zamir, 1993; 

Lancaster, 1994; Shield, Rehm, Gmel, Rehm, & Allamani, 2013; Zucker, 1995). 

Characterization of these predictors and their antecedents has led to the development of 

different typologies and/or drinking profiles as well as subcategories of severity associated 

with a diagnosis of an AUD in the Diagnostic and Statistical Manual of Mental Disorders, 

4th and 5th Editions (DSM-4, DSM-TR-4 and DSM-5, American Psychiatric Association, 

1994, 2000, 2013; Babor et al., 1992; Cloninger, 1987; Conrod, Pihl, Stewart, & Dongier, 

2000; Epstein, Kahler, McCrady, Lewis, & Lewis, 1995; Lesch & Walter 1996; Moss, Chen, 

& Yi, 2007; Prelipceanu & Mihailescu, 2005; Preuss, Watzke, & Wurst, 2014; Windle & 
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Scheidt, 2004; Zucker, 1987). It has also been shown that an individual’s ranking within a 

particular typology predict’s the efficacy of certain pharmacotherapies (Cherpitel, 

Moskalewicz, & Swiatkiewicz, 2004; Dundon, Lynch, Pettinati, & Lipkin, 2004; Epstein et 

al., 1995; Forray & Sofuoglu, 2014; Hulse, 2012; Johnson, 2005, 2010; Johnson, Ait-Daoud, 

Ma, & Wang, 2003; Keating, 2013). Therefore, age-of-onset and pattern of drinking, 

recognizing that these are often correlated, have significant predictive validity for a life-time 

diagnosis of alcohol abuse or dependence and, in some cases, the effectiveness of 

pharmacotherapies to treat alcohol dependence. In this chapter, alcohol and ethanol are used 

interchangeably; such that in the clinical setting the term alcohol is preferentially used over 

ethanol, whereas the term ethanol (scientific name for the two-carbon chain alcohol) is 

preferentially used over alcohol in the preclinical setting.

2. Neurobehavioral Correlates with Alcohol Abuse and Dependence

Clinical and basic research indicate that 1) lower responsivity to ethanol’s effects is directly 

associated with alcohol abuse and dependence (e.g., Crabbe, Bell & Ehlers, 2010; Draski & 

Deitrich, 1996; Heit et al., 2013; Morean & Corbin, 2010; Morozova, Mackay & Anholt, 

2014; Schuckit & Gold, 1988; Silveri, 2012, 2015; Spear, 2010, 2014); 2) the ability to 

display greater levels and quicker development of tolerance (a reduction in ethanol’s effects 

after prior treatment with ethanol) to ethanol’s effects is also associated with alcohol abuse 

and dependence (e.g., Lê & Mayer, 1996); 3) additionally, the expression of anxiety-like 

behavior under basal and/or withdrawal conditions is associated with a propensity to abuse 

alcohol (e.g., Heilig, Egli, Crabbe, & Becker, 2010; Heilig, Thorsell, et al., 2010; Kirby, 

Zeeb, & Winstanley, 2011; Pautassi, Camarini, Quadros, Miczek, & Israel, 2010; Thorsell, 

2010); and 4) moreover, the expression of low- to moderate-dose ethanol-induced 

stimulation [which is modeled in rodents by increased motor activity/approach behavior 

(Chappell & Weiner, 2008; Faria et al., 2008; Wise & Bozarth, 1987), aggression 

(Chiavegatto, Quadros, Ambar, & Miczek, 2010), and social facilitation (Varlinskaya & 

Spear, 2009, 2010)] is associated with excessive alcohol consumption. This behavioral 

phenotype may have pharmacological validity as well, such that the histaminergic (c.f., 

Panula & Nuutinen, 2011 and references therein) and ghrelin (c.f., Jerlhag, Landgren, 

Egecioglu, Dickson, & Engel, 2011b and references therein) systems have been implicated 

in ethanol-induced motor activation, ethanol-induced conditioned place preference, alcohol-

preference and high alcohol consumption behavior. However, there remain concerns with the 

translatability of ethanol-induced stimulation in rodents vs humans (e.g., Crabbe et al., 

2010). For instance, other than low- to moderate-dose effects on (a) self-report (Morzorati, 

Ramchandani, Flury, Li, & O’Connor, 2002; Viken, Rose, Morzorati, Christian, & 2003), (b) 

heart rate (Finn & Justus, 1997; Peterson et al., 1996), and (c) brain activity (Lukas, 

Mendelson, Benedikt, & Jones, 1986; Sorbel, Morzorati, O’Connor, Li, & Christian, 1996; 

Trim et al., 2010), the stimulating effects of ethanol are less apparent in humans compared 

with rodents.

3. Neurochemical Correlates with Alcohol Abuse and Dependence

Clinical and basic research indicate that alcohol abuse and dependence are mediated in part 

by a number of neurobiological systems (c.f., Koob, Arends, & Le Moal, 2014; Koob, Buck, 
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et al., 2014; Noronha, Cui, Harris, & Crabbe, 2014; Pierce & Kenny, 2013; Robbins, Everitt, 

& Nutt, 2010; Self & Staley, 2010; Sommer & Spanagel, 2013; Spanagel, 2009): 

acetylcholine (ACh: Chatterjee & Bartlett, 2010; Davis & de Fiebre, 2006; Rahman, 

Engleman, & Bell, 2015, 2016; Soderpalm, Ericson, Olausson, Blomqvist, & Engel, 2000), 

adenosine (Filip, Zaniewska, Frankowska, Wydra, & Fuxe, 2012; Nam, Bruner, & Choi, 

2013), dopamine (DA: Bhaskar & Kumar, 2014; Engel & Jerlhag, 2014; Heinz, 2002; Nutt, 

Lingfor-Hughes, Erritzoe, & Stokes, 2015; Soderpalm & Ericson, 2013), endocannabinoid 

(Moreira, Jupp, Belin, & Dalley, 2015), gamma-aminobutyric-acid (GABA: Agabio & 

Colombo, 2014; Kumar et al., 2009; Liang & Olsen, 2014; Maccioni & Colombo, 2009), 

glutamate (Barron et al., 2012; Bell et al., 2016; Davis & Wu, 2001; Gass & Olive, 2008; 

Rao, Bell, Engleman, & Sari, 2015), purinergic (Franklin et al., 2014), serotonin (5-HT: 

Engleman, Rodd, Bell, & Murphy, 2008; Hauser et al., 2014; Lovinger, 1999), melanocortin 

(Olney, Navarro, & Thiele, 2014), opiate (Charbogne, Kieffer, Befort, 2014; Drews & 

Zimmer, 1997), orexin (Baimel et al., 2015), oxytocin (Buisman-Pijlman et al., 2014), 

neuropeptide-Y (NPY: Heilig & Thorsell, 2002), corticotropin releasing factor (CRF: Burke 

& Miczek, 2014; Koob, 2010), substance P (George et al., 2008), nociceptin/orphanin FQ 

(NOP, N/OFQ: Economidou et al., 2008; Witkin et al., 2014); ghrelin (Jerlhag, Egecioglu, 

Dickson, & Engel, 2011; Jerlhag et al., 2009; Jerlhag, Landgren, et al., 2011); neurotrophic 

factors such as BDNF (Logrip, Janak, & Ron, 2009), and hypothalamic-pituitary-adrenal 

(HPA) activity including corticosteroids, etc. (Gianoulakis, Guillaume, De Waele, & 

Angelogianni, 1995; Keith, Roberts, Wisen, & Crabbe, 1995; Kiefer, Jahn, Otte, Nakovics, 

& Wiedemann, 2006; Rasmussen, Boldt, Wilkinson, & Mitton, 2002; Richardson, Lee, 

O’Dell, Koob, & Rivier, 2008) systems within the brain. More recently there has been a 

significant increase in research on the neuroimmune system, which can modulate these 

neurochemical/neuropeptide systems and is an important contributor to the development of 

addiction (Crews, Qin, Sheedy, Ventreno, & Zou, 2013; Cui, Shurtleff, & Harris, 2014; Kane 

et al., 2014; Robinson et al., 2014; Ward, Lallemand, & de Witte, 2014). This is one area 

where basic and clinical research have informed each other, such that innate differences or 

ethanol-induced changes in neurotransmitter, neuropeptide and neuroimmune systems of 

subjects genetically predisposed for excessive ethanol consumption strongly suggests these 

systems play a significant role in the development of alcoholism, at least in predisposed 

individuals (c.f., Bell et al., 2012; Robinson et al., 2014). By extension, demonstration of 

these innate neurotransmitter and/or neuropeptide differences in an animal model of 

alcoholism underscore its utility in screening the efficacy of compounds to treat alcohol 

dependence.

5. The Genetics of Alcoholism

Family History Positive (FHP) for alcoholism individuals are persons who have relatives that 

meet diagnostic criteria for AUDs. The strongest expression of correlative phenotypes 

(discussed later) is observed in FHP individuals with this characteristic across multiple 

generations, starting with the immediate family. These findings provide strong support for 

genetics as a mediator in the development of alcoholism (c.f., Schuckit, 2014). 

Epidemiologically, twin studies have yielded data indicating a strong genetic component to 

the development and expression of alcohol dependence. Heath (1995) provides an excellent 
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overview of the early Australian (e.g., Eysenck & Eysenck, 1975; Martin et al., 1985), 

Finnish (e.g., Kaprio, Rose, Romanov, & Koskenvuo, 1991; Partanen, Bruun, & Markkanen, 

1966), London Twin Family Survey (e.g., Clifford, Hopper, Fulker, & Murray, 1984), 

Swedish (e.g., Cederlof, Friberg, & Lundman, 1977), US National Academy of Science/

National Research Council twin registry (e.g., Hrubec & Neel, 1978; Jablon, Neel, 

Gershowitz, & Atkinson, 1967), the US Vietnam Era Twin Survey (e.g., Goldberg, Eisen, 

True, & Henderson, 1990) and his own work with the US Virginia 30,000 Survey. What is 

most striking about his review of these twin registries and AUDs is that, while the US data 

tends to suggest that the development of AUDs in men is genetically influenced to a greater 

extent than that observed in women, multiple European studies suggest that the development 

of AUDs by women is genetically influenced to the same degree or more so than men 

(Heath, 1995). For further reading on the genetics of AUDs, see Hesselbrock (1995b) for an 

overview of early adoption studies, see Hesselbrock (1995a) for an overview of early work 

looking at Alcoholic Subtypes, see Cadoret (1995) for an overview of early studies on 

genetic correlates with other psychiatric disorders and see Schuckit (2014) for a recent 

review on the history of research investigating the genetics of alcohol and drug dependence.

6. Criteria for an Animal Model of Alcoholism

Different animal models have had different levels of success in research to develop 

treatments for both medical and psychiatric disorders (Gobrogge, 2014; Golbidi, Frisbee, & 

Laher, 2015; Griffin, 2002; McCairn & Isoda, 2013; McGonigle & Ruggeri, 2014; 

McKinney, 2001; McLarnon, 2014; Reser, 2014; Nestler & Hyman, 2010; Whiteside, 

Pomonis, & Kennedy, 2013). An animal model allows an experimenter to control the 

subject’s genetic background, environmental factors and prior drug experience. In addition, 

it allows for the examination of neurobehavioral, neurochemical and neurophysiological 

correlates associated with the behavioral, physiological and neurological states being 

modeled, in the present case alcohol abuse and dependence. These correlates can, in turn, 

facilitate the development of pharmacological and/or behavioral treatments for these 

disorders. There have been reservations as to whether a valid animal model of alcoholism 

could be developed (Cicero, 1979). These concerns stemmed from the fact that, in general, 

heterogeneous stock rats consume only modest levels of ethanol, such that blood alcohol 

concentrations (BACs) achieved are modest (c.f., Bell, Rodd, Engleman, Toalston, & 

McBride, 2014 for a comparison of 22 different rat lines and strains). Nevertheless, certain 

criteria for an animal model of alcoholism have been put forth (Cicero, 1979; Lester & 

Freed, 1973). Briefly, these criteria are 1) the animal should readily consume ethanol under 

free-choice access conditions; 2) the amount of ethanol consumed should result in 

pharmacologically relevant BACs; 3) ethanol should be consumed for its pharmacological 

effects; 4) ethanol should be reinforcing, usually demonstrated through operant procedures; 

5) chronic ethanol consumption should lead to the expression of metabolic and functional/

neuronal tolerance to alcohol’s effects; and 6) chronic consumption should lead to 

dependence, as indicated by withdrawal signs after access to ethanol is terminated. Other 

proposed criteria for a valid animal model of alcoholism include displaying characteristics 

associated with relapse-like drinking, generally demonstrated by an alcohol deprivation 

effect (ADE: McBride & Li, 1998); as well as excessive ethanol drinking during 

Bell et al. Page 6

Int Rev Neurobiol. Author manuscript; available in PMC 2016 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adolescence, such that it exceeds adult intake levels and binge-like access results in BACs > 

80 mg% as well as motor impairment (Bell et al., 2011, 2013, 2014; McBride, Rodd, Bell, 

Lumeng, & Li, 2014).

7. A Rat Genetic Animal Model of Alcoholism

The well-documented familial incidence of alcoholism, including multiple international twin 

studies, indicates a strong (40–70%) genetic component (discussed above) mediates a 

predisposition for and the development of alcohol use disorders (AUDs) (e.g., Cloninger, 

1987; Cotton, 1979; Hesselbrock, 1995a, 1995b; Schuckit, 1986). Given heterogeneous 

stock rats display a wide-range of ethanol-consumption levels (Richter & Campbell, 1940) 

and very early work on selective breeding for alcohol consumption, Williams and associates 

(Williams, Berry, & Beerstecher, 1949) as well as Mardones and colleagues (Mardones, 

Segovia, & Hederra, 1953; Mardones & Segovia-Riquelme, 1983) proposed a genetic link to 

ethanol intake in rodents. From their work (e.g., Mardonoes et al., 1953; Mardones & 

Segovia-Riquelme, 1983) and that of four other international sites, bidirectional selective 

breeding has resulted in at least six high alcohol-consuming vs. their respective low alcohol-

consuming rat lines (c.f., Bell et al., 2012).

Bi-directional selective breeding is a powerful genetic tool for studying alcohol-associated 

phenotypes (e.g., Crabbe, 2008). Compared to pure association studies such as genome-wide 

association studies (GWAS) and recombinant inbred lines (RILs), selective breeding from a 

heterogeneous outbred stock can make low frequency/rare alleles (minor allele frequency 

<0.05) more common by segregating these genetic polymorphisms into the opposite 

extremes of the overall population. This bidirectional selection is accomplished through 

systematic mating of animals with similar traits (alcohol-preferring on the one hand vs. 

alcohol-avoiding on the other) over successive generations. Thus, the high and low lines will 

exhibit extreme phenotypes exceeding the range found in the original parent population. 

Additionally, selective breeding for any phenotypes (such as alcohol preference) is 

hypothesis driven and genetically correlated traits of the primary selected phenotype 

(presumably due to pleiotropic actions of genes: Crabbe, Phillips, Kosobud, & Belknap, 

1990) can be identified for further study. A major advantage of this selection process is that 

the ethanol-drinking phenotype is observed without the stress of environmental 

manipulations.

8. The P Rat as a Genetic Animal Model of Alcoholism

The alcohol-preferring, P, and alcohol-nonpreferring, NP, rat lines were developed by bi-

directional mass selection from a closed-colony of Wistar rats at the Walter Reed Army 

Hospital and subsequently transferred to the Indiana University School of Medicine, 

Indianapolis, Indiana, USA (Lumeng, Hawkins, & Li, 1977). Two metrics were used for the 

selection of an alcohol preference. First, the animals had to prefer an unadulterated 10% 

ethanol solution over water by a ratio of at least 2:1. Second, the animals had to consume at 

least 5 g of ethanol/kg body weight/day. The first criterion was used to prevent selecting for 

an artifact of body weight when using the second criterion (selection for lower body weight 

will appear to be equivalent to a selection for high ethanol consumption only). To place this 
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5 g/kg/day selection criterion in a clinical perspective, using 0.793 as the specific gravity of 

ethanol, 90-proof whiskey as the preferred alcoholic beverage of choice for a 70 kg male, 

and the fact that rats metabolize ethanol close to 1.4 times the rate of humans, 5 g/kg/day of 

ethanol intake by a rat would be approximately a fifth of 90-proof whiskey being consumed 

each day.

Regarding criteria for an animal model of alcoholism, under free-choice conditions (water 

and food available) P rats readily consume greater than 5 g/kg/day of ethanol, whereas NP 

rats consume less than 1 g/kg/day (Li, Lumeng, McBride, & Murphy, 1987). P rats readily 

attain pharmacologically relevant blood alcohol concentrations (BACs, 80 to 250 mg%: this 

would approximate 0.08 to 0.25 in forensic terms, the latter under operant binge-like 

conditions) (Bell et al., 2013, 2014, 2011; Bell, Rodd, Lumeng, Murphy, & McBride, 2006; 

Bell, Rodd, Sable, et al., 2006; Bell, Rodd, Schultz, et al., 2008; McBride, Kimpel, 

McClintick, Ding, Hauser, et al., 2013; McBride, Kimpel, et al., 2014; McBride, Rodd, et 

al., 2014; Murphy et al., 2002). Ethanol-drinking in the home-cage also results in 

intoxication including motor impairment, as measured with an oscillating bar apparatus 

(Bell, McKinzie, Murphy, & McBride, 2000; Bell et al., 2001). Moreover, P rats will display 

tolerance to this effect after chronic binge drinking (Bell et al., 2011). P rats operantly self-

administer ethanol intragastrically for its post-ingestive effects (Murphy et al., 1988; Waller, 

McBride, Gatto, Lumeng, & Li, 1984). P rats will operantly self-administer ethanol using a 

dipper model, indicating these rats will work for access to ethanol (Files, Samson, Denning, 

& Marvin, 1998; Murphy, Gatto, McBride, Lumeng, & Li, 1989; Rodd et al., 2003; Rodd-

Henricks et al., 2002a, 2002b; Samson, Files, Denning, & Marvin, 1998; Toalston et al., 

2008) or sipper tube model (Beckwith & Czachowski, 2014; Bertholomey, Verplaetse, & 

Czachowski, 2013; Czachowski & Samson, 2002; Samson & Czachowski, 2003; Verplaetse, 

Rasmussen, Froehlich, & Czachowski, 2012; Verplaetse & Czachowski, 2015) indicating 

these rats will work for access to ethanol.

Whereas ethanol-naïve P and NP rats display similar levels of ethanol clearance (Li & 

Lumeng, 1977; Lumeng, Waller, McBride, & Li, 1982), after chronic ethanol-drinking (6–8 

weeks) P rats display metabolic as well as functional tolerance to the motor impairing and 

aversive effects of ethanol (Gatto et al., 1987; Lumeng & Li, 1986; Stewart, McBride, 

Lumeng, Li, & Murphy, 1991). Moreover, similarly treated P rats also display dependence-

associated signs when ethanol access is terminated (Kampov-Polevoy, Matthews, Gause, 

Morrow, & Overstreet, 2000; Waller, McBride, Lumeng, & Li, 1982). In addition, P rats 

display relapse-like drinking by exhibiting a robust alcohol deprivation effect (ADE: Rodd et 

al., 2003; Rodd-Henricks et al., 2001; Rodd-Henricks, McKinzie, Shaikh, et al., 2000). The 

ADE is a transient increase in ethanol intake after a period of ethanol withdrawal (c.f., Rodd, 

Bell, McKinzie, et al., 2004; Rodd, Bell, Sable, Murphy, & McBride, 2004; Vengeliene, 

Bilbao, & Spanagel, 2014). Regarding initial sensitivity, compared with NP rats, P rats are 

less sensitive to the ataxic (Bell et al., 2001) and hypothermic (Stewart, Kurtz, Zweifel, Li, 

& Froehlich, 1992) effects of ethanol; and P rats develop tolerance quicker to the ataxic 

(Bell et al., 2001) and hypnotic (Kurtz, Stewart, Zweifel, Li, & Froehlich, 1996) effects of 

ethanol as well. During ethanol withdrawal, P, but not NP, rats display greater acoustic 

startle reactivity compared with basal conditions (Chester, Blose, & Froehlich, 2004). P rats 

display greater low dose ethanol-induced locomotor activity, compared with NP rats (Rodd, 
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Bell, McKinzie, et al., 2004; Waller, Murphy, McBride, Lumeng, & Li, 1986), and display 

locomotor activation during ethanol drinking or self-administration (Bell, Rodd, Toalston, et 

al., 2008; Bell et al., 2002; Melendez et al., 2002). The latter provides additional support to 

the view that P rats find ethanol rewarding. Thus, the P line of rats satisfies criteria proposed 

by multiple authors for a valid animal model of alcoholism. The key behavioral features of 

this genetic rat animal model of alcoholism are outlined below:

Key features of the P genetic rat animal model of alcoholism

1. >7 g ethanol/kg body weight/day is orally consumed under home-cage, free-choice, 

24 hr conditions (Bell et al., 2011, 2013, 2014; Bell, Rodd, Schultz, et al., 2008; Li 

et al., 1987)

2. >1 g/kg ethanol is orally consumed during the first 15-min of home-cage, limited 

access conditions (Bell et al., 2014; Bell, Rodd, Lumeng, et al., 2006; Murphy et 

al., 1986; Russell, McBride, Lumeng, Li, & Murphy, 1996)

3. Pharmacologically relevant blood alcohol concentrations (BACs: 80 to 250 mg%), 

which parallel those observed in alcoholics, are achieved during ethanol drinking 

and self-administration (Bell et al., 2011, 2014; Bell, Rodd, Lumeng, et al., 2006; 

Bell, Rodd, Sable, et al., 2006; Bell, Rodd, Schultz, et al., 2008; Murphy et al., 

1986, 2002; Rodd et al., 2003)

4. Ethanol is self-administered intragastically (Murphy et al., 1988; Waller et al., 

1984) and intracranially (Engleman et al., 2009; Toalston et al., 2014) indicating 

taste and calories are not the primary motivators for this behavior

5. Ethanol is consumed and self-administered despite ethanol-induced motor 

impairment (Bell et al., 2011; McBride, Kimpel, McClintick, Ding, Hauser, et al., 

2013)

6. Ethanol drinking and self-administration induce autonomic (heart rate) and/or 

behavioral (motor) activation (Bell, Rodd, Toalston, et al., 2008; Bell et al., 2002; 

Melendez et al., 2002)

7. Ethanol is operantly self-administered, without using fading/adaptation techniques 

(i.e., P rats work for access to ethanol) (Files et al., 1998; Murphy et al., 1989; 

Rodd et al., 2003; Rodd-Henricks et al., 2002a, 2002b; Rodd-Henricks, McKinzie, 

Shaikh, et al., 2000; Samson et al., 1998; Toalston et al., 2008)

8. Chronic home-cage, free-choice ethanol consumption leads to metabolic (Lumeng 

& Li, 1986) and functional (Gatto et al., 1987; Stewart et al., 1991; 1996) tolerance

9. Chronic home-cage, ethanol consumption leads to dependence (e.g., decreased 

seizure thresholds) (Kampov-Polevoy et al., 2000; Waller et al., 1982)

10. Relapse behavior is displayed under home-cage and operant conditions [e.g., 

expression of an alcohol deprivation effect (ADE) is observed] (Rodd et al., 2003; 

Rodd-Henricks et al., 2001; Rodd-Henricks, McKinzie, Shaikh, et al., 2000)

11. Serve as an animal model of adolescent binge alcohol abuse by exceeding ethanol 

intakes seen during adulthood, with motor impairment and BACs exceeding 80 mg
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%, under both continuous and limited access conditions (Bell et al., 2011, 2014; 

McBride et al., 2005; McBride, Rodd, et al., 2014)

12. Self-administer or consume drugs of abuse by (a) orally consuming nicotine-

adulterated solutions (Hauser et al., 2012); (b) operantly self-administering nicotine 

both orally (Hauser et al., 2014) and intravenously (Le et al., 2006); and (c) 

intracranially self-administering cocaine (Katner et al., 2011), nicotine (Deehan et 

al., 2015; Hauser et al., 2014), and nicotine + ethanol (Truitt et al., 2015).

9. Some Family History Positive (FHP) Correlates

The above survey of the literature concerning neurobehavioral and neurobiological 

phenotypes found in these selectively bred high vs. low alcohol-consuming rat lines 

indicates that many phenotypes present in alcohol abusing or dependent individuals are also 

present in these lines. For example, similar to the animal literature, clinical studies of FHP 

subjects (i.e., with a family history of alcoholism) report an inverse relationship between low 

level responsivity to ethanol and risk for the development of AUDs (c.f., Crabbe et al., 2010; 

Schuckit, 1994, 2009, 2014). Thus, after an ethanol challenge young adult FHP females 

(Eng et al., 2005; Lex et al., 1988) and males (Schuckit, 1985; Schuckit & Gold, 1988) 

display less body sway than family history negative (FHN) controls. An individual’s level of 

response (low vs. high) to ethanol also influences brain regional activation following an 

acute ethanol challenge (Trim et al., 2010). Moreover, an individual’s level of response to 

ethanol is associated with the long- vs. short-allelle for the 5-HT transporter (5htt) gene and 

this association has significant predictive validity for alcohol intake by adolescents 

(Hinckers et al., 2006). As discussed earlier, the FHP, P, rat displays lower levels of ethanol-

induced behavioral and physiological changes compared with FHN, NP, rats (Bell et al., 

2001; Stewart et al., 1992).

Alcohol dependence is a chronic relapsing disorder, with craving and relapse often 

precipitated by physiological and behavioral responses (i.e., cue-reactivity) to environmental 

and interoceptive cues associated with alcohol and/or drugs of abuse consumption (Childress 

et al., 1993; Drummond et al., 1990; Greeley et al., 1993; Kaplan et al., 1983, 1985; O’Brien 

et al., 1992; Rajan et al., 1998; Stormark et al., 1998). In addition, ethanol’s effects on heart 

rate-reactivity are associated with level of genetic density in FHP individuals as well 

dissociating FHP from FHN subjects, such that persons that are FHP display greater 

sensitivity to ethanol reward and display sensation-seeking behavior (Assaad et al., 2003; 

Conrod, Pihl, & Vassileva, 1998; Finn, Earleywine, & Pihl, 1992; Peterson, Pihl, Seguin, 

Finn, & Stewart, 1993). This has also been shown in cross-sensitivity by stimulant users 

displaying a characterisitic alcohol-reward heart rate response (Brunelle, Barrett, & Pihl, 

2006). It is noteworthy that both male (Bell et al., 2002) and female (Bell, Rodd, Toalston, et 

al., 2008) P rats display increased heart rate during ethanol drinking. In addition, this 

autonomic reactivity can be conditioned to the environment associated with ethanol 

consumption (Bell, Rodd, Toalston, et al., 2008; Bell et al., 2002). Thus, monitoring 

autonomic reactivity in P rats may be an important model system for testing compounds 

targeting craving, especially in the context of cue-reactivity.
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10. Some Neurochemical, Neuropharmacological as well as Neurogenetic 

Correlates

The Cholinergic System

Acetylcholine is released from neurons projecting to a broad range of cortical and 

subcortical structures and influences cellular physiology and neuronal function throughout 

the brain (Newman, Gupta, Climer, Monaghan, & Hasselmo, 2012). There are two 

classifications of cholinergic receptors: nicotinic and muscarinic. The neuronal nicotinic 

acetylcholine receptors (nAChRs) belong to the family of ligand-gated ion channel receptors 

(Albuquerque, Pereira, Alkondon, & Rogers, 2009; Gotti et al., 2009). Nicotinic 

acetylcholine receptors (nAChRs) consist of 11 neuronal subunits, which are divided into 8 

alpha subunits (α2–α10) and 3 beta subunits (β2–β4). nAChR subtypes with diverse subunit 

combinations are distributed across multiple brain regions, including the mesocorticolimbic 

and extended amygdala reward circuitry, where they regulate dopaminergic function. A 

notable difference among the receptor subtypes is that the homomeric α7 nAChR does not 

desensitize to nicotine stimulation as the heteromeric nAChRs (e.g., α4β2 nAChR) do. The 

α7 nAChRs are located presynaptically on glutamatergic projections from the mPFC to the 

NAcbSh. Therefore, activation α7 nAChRs may enhance glutamatergic excitatory drive and 

promote DA release in the NAcb after α4β2 receptors are desensitized. Muscarinic 

acetylcholine receptors (mAChRs) are G-protein coupled receptors that are widely 

distributed in the brain. There are 5 mAChRs neuronal subunits (M1–M5) (Bymaster, 

McKinzie, Felder, & Wess, 2003; Wess, 2003; Wess et al., 2003; Yamada et al., 2003). 

Studies examining the striatum indicated that M1 receptors are expressed on spiny 

projection neurons (Wang et al 2006), whereas M2/M4 receptors are primarily presynaptic 

autoreceptors (Yan & Surmeier, 1996, Zhang et al., 2002). As autoreceptors, M2/M4 

receptors inhibit ACh release and subsequent nAChR-dependent DA release in the striatum 

(Shin et al., 2015). In addition, M2 receptors are located on glutamatergic terminals which 

inhibit its release (Hersch, Gutekunst, Rees, Heilman, & Levey, 1994). The M5 receptor is 

the only mAChR subtype found on midbrain DA neurons (Vilaró et al., 1990; Palacios, & 

Mengod, 1990; Weiner, Levey, & Brann, 1990) and these receptors modulate DA and DA/

glutamate projections from the midbrain (Shin et al., 2015).

Substantial research indicates that nAChR activity mediates, in part, the rewarding effects of 

drugs of abuse (Chatterjee & Bartlett, 2010; Corrigall & Coen, 1994; Ericson, Blomqvist, 

Engel, & Soderpalm, 1998; Hendrickson, Guildford, & Tapper, 2013; McGehee & Role, 

1995; Nisell, Nomikos, & Svensson 1994; Rahman, 2013; Rahman et al., 2015, 2016; 

Rahman & Prendergast, 2012; Sajja, Dwivedi, & Rahman, 2010). For example, both alcohol 

(Brodie, Pesold, & Appel, 1990; Brodie, Shefner, & Dunwiddie, 1999) and nicotine 

(Calabresi, Lacey, & North, 1989; Nisell et al., 1994) activate VTA DA projection neurons 

and stimulation of nAChRs within the VTA modulate, at least in part, the reinforcing effects 

of nicotine (Corrigall & Coen, 1994; Nisell et al., 1994) and alcohol (Blomqvist, Ericson, 

Johnson, Engel, & Soderpalm, 1996; Ericson, Molander, Lof, Engel, & Soderpalm, 2003; 

Soderpalm et al., 2000). Additonally, a number of reports indicate that pre-exposure to 

nicotine significantly increases operant or free-choice ethanol self-administration and 

reinstates ethanol-seeking behavior in animal models (Bito-Onon, Simms, Chatterjee, 
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Holgate, & Bartlett, 2011; Hauser et al., 2012; Le et al., 2003). Moreover, co-administration 

of ethanol and nicotine produces an additive effect on their reinforcing effects and associated 

dopamine release in the nucleus accumbens (NAcb, Ericson, Lof, Stomberg, & Soderpalm, 

2009; Tizabi, Bai, Copeland, & Taylor, 2007; Sajja et al., 2010).

Emerging preclinical evidence indicates that a number of ligands targeting nAChRs 

modulate ethanol drinking behavior. For example, mecamylamine, a non-selective nAChR 

antagonist or varenicline, a partial agonist at α4β2* nAChRs, reduces ethanol drinking 

behavior by targeting nAChRs in the mesocorticolimbic dopamine system (Ericson et al., 

1998; Le et al., 2000; Steensland, Simms, Holgate, Richards, & Bartlett, 2007). In addition, 

nAChR ligands such as cytisine, a partial agonist at α4β2*, and lobeline, a non-selective 

antagonist, were found to reduce ethanol self-administration or nicotine-induced ethanol 

drinking in rodents (Bell, Eiler, Cook, & Rahman, 2009; Chatterjee, Steensland, Rollema, & 

Bartlett, 2011; Hendrickson, Zhao-Shea, & Tapper, 2009; Sajja & Rahman, 2011, 2012, 

2013). Overall, brain nAChRs have emerged as important therapeutic targets for the 

rewarding effects of ethanol in numerous animal models. Regarding P rats, sazetidine-A, a 

novel ligand that desensitizes α4β2 nAChRs with partial agonistic activity reduces ethanol 

drinking by P rats (Rezvani et al., 2010). In addition, pretreatment with nicotine increases 

operant ethanol-self administration and relapse behavior in P rats (Hauser et al., 2012). 

Furthermore, P rats have higher sensitivity to the reinforcing effects of nicotine in the pVTA 

compared with outbred Wistar rats (Hauser et al., 2014). These reinforcing effects of 

nicotine can be blocked by mecamylamine, an nAChR antagonist, when injected 

simultaneously into the pVTA of P rats (Hauser et al., 2014), indicating that mesolimbic 

cholinergic activity modulates the reinforcing effects of ethanol and nicotine. More recent 

findings indicate that P rats will also co-administer ethanol + nicotine into the pVTA (Truitt 

et al., 2015) and self-administer nicotine into the NAcbSh (Deehan et al., 2015). In addition, 

oral binge ethanol + nicotine self-administration by P rats induces greater sensitivity to the 

reinforcing effects of nicotine in the NAcbSh by shifting the self-administration dose-

response curve to the left (Deehan et al., 2015).

Receptor binding studies have shown that P rats have lower striatal α7 nAChR expression 

than NP rats (Tizabi et al., 2001). Additonally, there is higher expression of Chat (choline 

acetyltransferase), Chrm3 (mACh3R), Slc5a7 (transporter uptake for acetylcholine 

synthesis), Slc18a3 (vesicular amine transport into secretory vesicles) in the NAcbSh of 

adult P rats compared with NP rats, whereas adult P rats have lower expression of Chrm4 
(mACh4R) in the NAcbSh than NP rats (McBride, Kimpel, McClintick, Ding, Hauser, et al., 

2013, McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013). These findings suggest that 

the accumbal cholinergic system may be more active in P rats than NP rats. Clinical research 

indicates individuals with AUDs have lower ChAT activity and mAChR density in the 

hippocampus (Antuono, Sorbi, Bracco, Fusco, & Amaducci, 1980; Nordberg, Larsson, 

Perdahl, & Winblad, 1983) as well as ChAT protein expression in the basal forebrain 

(Ventreno, Broadwater, Liu, Spear, & Crews, 2014). However, these clinical findings do not 

necessarily indicate that basal levels are different from control subjects. Our microarray 

findings indicate that ethanol drinking by adult P rats increased Chrn7a expression in the 

NAcb (Bell, Kimpel, et al., 2009), but reduced its expression in the CeA (McBride et al., 

2010) and the DRN of ethanol-drinking adolescent P rats (McClintick et al., 2015). Overall, 
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a modest number of differences in ACh--associated gene expression levels have been 

detected between P and NP rats (data for the pVTA came from McBride et al., 2012; data for 

the CeA and NAcbSh came from McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013). 

Similalry, few changes in ACh-associated gene expression levels have been detected 

following binge-drinking in adult or adolescent P rats (adult data for the whole NAcb came 

from Rodd et al., 2008; adult data for the NAcbSh came from Bell, Kimpel, et al., 2009, 

McBride et al., 2010; adult data for the CeA came from McBride et al., 2010; adult data for 

the pVTA came from McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013; adolescent 

data for the CeA came from McBride, Kimpel, et al., 2014; adolescent data for the DRN 

came from McClintick et al., 2015) thus far (Figure 1). Taken together, these data indicate 

that brain cholinergic activity regulates behaviors associated with alcohol abuse and 

alcoholism and the P rat displays some treatment characteristics seen in the clinical 

population. For instance, varenicline has modest effects on reducing ethanol intake by P rats. 

However, the tests done in P rats thus far have not incorporated ethanol and nicotine co-

abuse, which appears to be necessary to observe efficacy with varenicline in the clinical 

setting.

The Dopaminergic System

DAergic projections (Figure 2) emanating from the tegmentum [especially the ventral 

tegmental area (VTA)] and terminating in limbic, forebrain and cortical regions (e.g., the 

mesocorticolimbic and extended amygdala reward circuitry), are involved in the appetitive 

and consummatory behaviors associated with, as well as the positive and negative 

reinforcing properties of, addictive drugs. DA activates metabotropic receptors (D1–5) that 

are generally classified as D1-like (D1 and D5) and D2-like (D2–4) (Cooper, Bloom, & Roth, 

2002). D1-like receptors are typically coupled to the activation of adenylyl cyclase whereas 

D2-like receptors are coupled to the inhibition of adenylyl cyclase (Cooper et al., 2002). DA 

neurotransmission is terminated via clearance by uptake through the high affinity DA 

transporter (DAT) (Cooper et al., 2002). The DAergic system plays a central role in the 

processing of natural-, alcohol- and drug of abuse-associated reward and reinforcement (e.g., 

Di Chiara & Imperato, 1988; McBride & Li, 1998; Melendez et al., 2002; Nogueira, 

Kalivas, & Lavin, 2006; Palmer, Low, Grandy, & Phillips, 2003; Volkow & Morales, 2015), 

with imaging studies indicating D2/3 receptor dysfunction in subjects addicted to several 

different drugs of abuse (Cosgrove, 2010). When an individual or animal ingests alcohol 

and/or other drugs of abuse, DA efflux is increased in several key mesocorticolimbic brain 

reward centers (e.g., Brodie et al., 1990; Franklin et al., 2009; Gessa, Muntoni, Collu, 

Vargiu, & Mereu, 1985; Imperato & Di Chiara, 1986; Smith & Weiss, 1999; Yoshimoto & 

McBride, 1992). This change in DAergic activity and other associated neuroplastic changes 

promote further alcohol and drug taking behavior. Following prolonged alcohol and/or drug 

abuse, individuals may display tolerance to these DA-elevating properties. Thus, the 

requirement for more alcohol and/or drug taking to get the same level of initial response 

moves the individual further through the addiction cycle, which starts out as impulsive use 

for intoxication and progresses to compulsive use to avoid or reduce the negative 

consequences of alcohol/drug withdrawal.
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Regarding P rats, these animals exhibit reduced basal NAcb tissue DA levels and/or 

enhanced ethanol-induced extracellular DA efflux, compared to outbred rats or their alcohol 

non-preferring counterparts (Engleman, Ingraham, McBride, Lumeng, & Murphy, 2006; 

McBride, Chernet, Dyr, Lumeng, & Li, 1993; Murphy, McBride, Lumeng, & Li, 1982, 

1987; Smith & Weiss, 1999; Strother, Lumeng, Li, & McBride, 2005; also see Bell et al., 

2012b; Murphy et al., 2002 for reviews). DAergic neuronal activity from the VTA appears to 

play a major role in these alterations of mesocorticolimbic DAergic tone either basally or 

under ethanol-induced conditions (e.g., Engleman et al., 2011; Morzorati, 1998; Morzorati 

& Marunde, 2006; Morzorati, Marunde, & Downey, 2010), which is modulated in part by 

glutamatergic activity in the pVTA (Fitzgerald, Liu, & Morzorati, 2012). In addition, chronic 

or binge-like alcohol drinking by P rats reduces D2 autoreceptor function (Engleman, 

McBride, Li, Lumeng, & Murphy, 2003; Engleman et al., 2000), elevates extracellular DA 

levels (Thielen et al., 2004) and increases DA reuptake (Sahr et al., 2004) in the NAcb. Sari 

and colleagues (2006) also reported that long-term ethanol consumption by P rats increased 

D1 and D2 exprssion levels in the NAcb core (NAcbCo) with D2 expression also increased in 

NAcb shell (NAcbSh). These authors indicated that intermittent periods of ethanol 

deprivation increased D1 receptor expression in the amygdala and D2 receptor expression in 

the caudate putamen as well.

Given the evidence for differences in, and ethanol-induced changes of, DAergic activity, it is 

not surprising that a number of DA-associated compounds have been tested for their effects 

on ethanol drinking or self-administration by this line. Systemic administration of the DA 

agonist ibogaine (Rezvani et al., 1995) and DAT inverse modulator amphetamine (McBride, 

Murphy, Lumeng, & McBride, 1990) reduced ethanol drinking. Ethanol drinking by P rats 

also was disrupted by systemic administration of the D2 agonist bromocriptine (Mason et al., 

1994; McBride et al., 1990; Weiss et al., 1990) and the D3 agonist 7-OH-DPAT (Mason et 

al., 1997) as well as intra-VTA infusion of the D2 agonists quinpirole (Hauser et al., 2011; 

Nowak, McBride, Lumeng, Li, & Murphy, 2000) and quinelorane (Nowak et al., 2000). 

Both systemic administration (Mason et al., 1997) and intra-bed nucleus of the stria 

terminalis (BNST) infusion (Eiler, Seyoum, Foster, Mailey, & June, 2003) of the D1 

antagonist SCH23390 reduced ethanol drinking and self-administration by P rats. Similarly, 

both systemic administration (Mason et al., 1997) and intra-BNST as well as intra-VTA 

infusion (Eiler et al., 2003) of the D2 antagonist eticlopride reduced ethanol drinking and 

self-administration by P rats. Additonally, ethanol drinking by P rats was reduced by 

microinfusion of the D2 antagonist sulpiride into the VTA (Nowak et al., 2000), NAcb (Levy 

et al., 1991) and ventral pallidum (Melendez et al., 2005). Finally, systemic administration 

of the D3 antagonist SB-277011-A (Thanos et al., 2005) as well as the DAT inhibitors GBR 

12909 (McBride et al., 1990) and DOV 102,677 (Yang et al., 2012) reduced ethanol intake 

by this line of rats.

It is noteworthy that P rats have lower levels of D2 receptors than NP rats in the VTA, NAcb 

and caudate putamen (McBride, Chernet, Dyr, et al., 1993; Strother, Lumeng, Li, & 

McBride, 2003) and smaller subpopulations of DA projections from the VTA compared with 

NP rats (Zhou, Zhang, Lumeng, & Li, 1995), but no differences in D1 or D3 receptor levels 

have been detected thus far (McBride et al., 1997). Finally, differences in both mRNA and 

protein expression levels of alpha-synuclein (SNCA, often associated with DAergic 
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function) have been found between P and NP rats, such that hippocampal levels were twice 

as high in inbred P rats compared with inbred NP rats (Liang et al., 2003). Interestingly, 

clinical research indicates that Snca expression is associated with alcohol craving, hazardous 

alcohol-drinking and Post Traumatic Stress Disorder (PTSD) symptomology in hazardous 

drinkers (Foroud et al., 2007; Guillot, Fanning, Liang, Leventhal, & Berman, 2015; Guillot, 

Pang, Leventhal, Liang, & Berman, 2015). Regarding gene expression differences, similar to 

the cholinergic system, only a modest number of DA-associated differences have been 

detected between P and NP rats so far (data for the pVTA came from McBride et al., 2012; 

data for the CeA and NAcbSh came from McBride, Kimple, McClintick, Ding, Hyytia, et 

al., 2013). This paucity of findings was also true for DA-associated changes following 

ethanol drinking, usually binge-like, by P rats (adult data for the whole NAcb came from 

Rodd et al., 2008; adult data for the NAcbSh came from Bell, Kimpel, et al., 2009; McBride 

et al., 2010; adult data for the CeA came from McBride et al., 2010; adult data for the pVTA 

came from McBride, Kimpel, McClintick, Ding, Hauser, et al., 2013; adolescent data for the 

CeA came from McBride, Kimpel, et al., 2014; McBride, Rodd, et al., 2014; adolescent data 

for the DRN came from McClintick et al., 2015) (Figure 2). In summary, whenever ethanol-

induced changes were detected, the direction of change was generally an up-regulation of 

mRNA expression. Overall, the DAergic system is the center of the mesocorticolimbic 

reward circuit and it appears that effective medications for alcoholism modulate the circuit, 

rather than impacting the DA-system directly.

The GABAergic System

GABA is the primary inhibitory neurotransmitter in the CNS. Thus, it and its receptors are 

found throughout the brain (e.g., Benham, Engin, & Rudolph, 2014). In addition, there are 

four GABA transporters: GAT1 and GAT3 located pre-synaptically; GAT2 and GAT3 

located post-synaptically; GAT1, GAT2, GAT3 and GAT4 on glia (c.f., Clausen et al., 2006; 

Gonzalez-Burgos, 2010; Madsen, White, & Schousboe, 2010). The GABA receptors are 

classified as either GABAA or GABAB. There are multiple subunit isoforms for GABAA 

receptors [(alpha1–6), (beta1–3), gamma1–3), delta, (rho1–3), epsilon, pi and theta], but the 

most common in the CNS is a pentamer comprising (α1)2(β2)2(γ2). The receptor itself is a 

ligand-gated chloride channel that has binding sites for GABA, benzodiazepine, picrotoxin, 

steroids and anesthetics. Activation of the GABAA receptor opens the chloride channel for 

influx, which induces a hyperpolarized state that decreases the probability of an action 

potential resulting in an inhibitory state (c.f., Fritschy, Panzanelli, & Tyagarajan, 2012; 

McCarson & Enna, 2014). GABAA receptors are located extra- and post-synaptically, 

whereas GABAB receptors are located both pre- and post-synaptically (Hanchar, Dodsen, 

Olsen, Otis, & Wallner, 2005; Lovinger & Roberto, 2013). GABAB receptors are G-protein 

coupled, heteromer, receptors with two known subunits R1 and R2, where it appears the R1 

subunit binds GABA and the R2 subunit interacts with the G-protein (Gaiarsa, Kucweski, & 

Porcher, 2011; Terunuma et al., 2014).

Several research groups have reported significant associations between GABA gene variants, 

expression levels, and activation in brain regions such as the mesocorticolimbic system and 

the extended amygdala (which includes substructures of the bed nucleus of the stria 

terminalis, amygdala, nucleus accumbens and prefrontal cortex), with high alcohol-
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consuming phenotypes and risk for developing alcohol dependence in alcoholics as well as 

alcohol-preferring rats (Dick & Bierut, 2006; Enoch et al., 2012; Herman et al., 2012; Korpi 

& Sinkkonen, 2006; McBride et al., 2010; Tabakoff et al., 2009). Thus, differential GABA 

signaling could reflect one mechanism that predisposes individuals to consume alcohol. In 

addition, GABAergic activity regulates, in part, other neuromodulator systems in the 

mesocorticolimbic reward circuit (Eiler & June, 2007; Melis, Camarini, Ungless, & Bonci, 

2002; Rahman & McBride, 2002), supporting the role of GABA in DA-associated responses 

to reward. Given there are genetic differences, between P and NP rats, in these other 

neuromodulator systems of the mesocorticolimbic reward circuit as well (e.g., Bell et al., 

2012, 2016; Franklin et al., 2014; Rahman et al., 2014, 2016 and discussed herein), this 

gene-by-gene interactional effect may serve as another contributing factor for the 

development of alcohol abuse and dependence (e.g., Saba et al., 2015; Tabakoff et al., 2009). 

Acute alcohol experience potentiates GABA signaling and facilitates its hyperpolarizing 

actions (Koob, 2004). And, GABAA and GABAB receptors mediate some of the rewarding, 

reinforcing, and motivational effects of alcohol consumption and alcohol binge drinking 

(Eiler & June, 2007; Nowak, McBride, Lumeng, Li, & Murphy, 1998; Tanchuck, Yoneyama, 

Ford, Fretwell, & Finn, 2011; also see Agabio & Colombo, 2014). Systemically, the 

GABAA agonist topiramate (Breslin, Johnson, & Lynch, 2010; Lynch, Bond, Breslin, & 

Johnson, 2011) and GABAB agonist baclofen (Liang et al., 2006; Maccioni et al., 2012) and 

GABAB positive modulators GHB (June et al., 1995), CGP7930 (Liang et al., 2006) and 

GS39783 (Maccioni et al., 2012) all reduced ethanol drinking and/or self-administration by 

P rats. Similarly, negative modulators of the benzodiazepine-site Ro 15-4513 (McBride, 

Murphy, Lumeng, & Li, 1988), Ro 19-4603 (June et al., 1996; June, Murphy, Mellor-Burke, 

Lumeng, & Li, 1994; June, Torres, et al., 1998), Ru 34000 (June, Eggers, et al., 1998), Ro 

15-1788 (June et al., 1994; June, Torres, et al., 1998), CGS 8216 and ZK 93426 (June, 

Devaraju, et al., 1998; June, Zuccarelli, et al., 1998) all reduced ethanol intake and/or self-

administration by P rats. The partial agonist/antagonist βCCt systemically also reduced 

ethanol self-administration by P rats (June et al., 2003). Centrally, intra-VTA infusion of the 

GABAA receptor antagonists bicuculline, picrotoxin (Nowak et al., 1998) and SR95531 

(Eiler & June, 2007) reduced ethanol intake or self-administration by P rats. Similarly, intra-

VTA infusion of the negative modulator of the benzodiazepine-site Ru 34000 (June, Eggers, 

et al., 1998) as well as intra-CeA (Foster et al., 2004) and intra-VP (June et al., 2003) 

infusion of the partial agonist/antagonist βCCt reduced operant self-administration of 

ethanol by P rats. Also, shRNA-induced reductions of GABAA-α2-subunit and its associated 

toll-like receptor 4 (Tlr4), in the CeA of P rats, significantly reduced alcohol self-

administration (Liu et al., 2011).

Previous work indicated that P rats have more GABAA receptors in the NAcb than NP rats 

(Hwang, Lumeng, Wu, & Li, 1990), and P rats display a greater response to benzodiazepines 

in the PFC, NAcbSh, CPU, cingulate gyrus and dorsal lateral septum than NP rats as well 

(Thielen, McBride, Chernet, Lumeng, & Li, 1997). Additionally, as seen in Figure 3, gene 

expression for a number of GABAA and GABAB receptor subunits differ between P and NP 

rats (data for the pVTA came from McBride et al., 2012; data for the CeA and NAcbSh 

came from McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013). Also seen in Figure 3 

are our findings on the role of ethanol drinking, usually in a binge-like manner, on GABAA 
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and GABAB receptor subunit gene expression (adult data for the whole NAcb came from 

Rodd et al., 2008; adult data for the NAcbSh came from Bell, Kimpel, et al., 2009, McBride 

et al., 2010; adult data for the CeA came from McBride et al., 2010, adult data for the pVTA 

came from McBride, Kimpel, McClintick, Ding, Hauser, et al., 2013; adolescent data for the 

CeA came from McBride, Kimpel, et al., 2014; McBride, Rodd, et al., 2014; adolescent data 

for the DRN came from McClintick et al., 2015). In general, where differences in mRNA 

expression were detected in the NAcbSh and pVTA, P rats had lower GABAR-associated 

levels than NP rats. Following ethanol consumption by adult P rats, the majority of detected 

changes in the NAcbSh represented downregulated gene expression, whereas detected 

changes in the CeA were approximately equally down- vs up-regulated gene expression. 

Following ethanol drinking by adolescent P rats, practically all detected changes represented 

down-regulation of GABA-associated gene expression. These findings suggest lowered 

GABAergic function in the NAcbSh and DRN following excessive ethanol intake by P rats, 

which would support increased excitatory/glutamatergic activity as a contributor to excessive 

ethanol intake (see glutamatergic section directly below).

The Glutamatergic System

The amino acid glutamate is the primary excitatory neurotransmitter in the central nervous 

system (CNS). Given this, it is not surprising that glutamatergic projections, transporters and 

receptors are found throughout the brain. As the primary excitatory neurotransmitter, 

glutamate plays a crucial role in neuroplasticity, learning and memory (c.f., Henley & 

Wilkinson, 2013; Morris, 2013; Warburton, Barker, & Brown, 2013). Glutamate interacts 

with both metabotropic (Grm1-Grm8) and ionotropic receptors, which include those that can 

bind to N-methyl-D-aspartate (NMDA) subunits [Grin1, Grin2a-Grin2d, and Grin3a-

Grin3b], α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subunits [Gria1-

Gria4] or kainite subunits [Grik1-Grik4], for excellent reviews see (Danbolt, 2001; Niciu, 

Kelmendi, & Sanacora, 2010; Traynelis et al., 2010). Because of glutamate’s role in 

excitotoxicity, extracellular glutamate must be tightly controlled (Danbolt, 2001; Sari, 2014; 

Wang & Qin, 2010). Multiple glutamate transporters have been implicated in this process 

(Anderson & Swanson, 2000; Danbolt, 2001; Gegelashvili & Schousboe, 1997, Seal & 

Amara, 1999). Nevertheless, the human excitatory amino acid transporter 2 (EAAT2) and its 

rodent analog glutamate transporter 1 (GLT1) appear to be the primary transporters 

performing this function (Danbolt, 2001; Mitani & Tanaka, 2003; Rothstein, Van Kammen, 

Levey, Martin, & Kunci, 1995; Sari, 2014). However, the glial protein cystine/glutamate 

exchanger (xCT) appears to exchange extracellular cystine for intracellular (glial) glutamate 

(Bannai et al., 1984; Bannai & Ishii, 1982), which seems counterintuitive except for the fact 

that cystine is converted to cysteine, among other things, and reduces oxidative stress (c.f., 

Ishii & Mann, 2014).

Glutamatergic activity has been shown to mediate natural as well as drug and non-drug 

associated reward through direct and indirect interactions with other neurotransmitter/

neuromodulatory systems within the mesocorticolimbic and extended amygdala reward 

neurocircuitry (e.g., Carlezon & Wise, 1996; Grace, Floresco, Goto, & Lodge, 2007; Kupila 

et al., 2012). For instance, research with the P rat has shown that free-choice ethanol 

drinking results in elevated levels of extracellular glutamate in the NAcb (Das, Yamamoto, 
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Hristov, & Sari, 2015), as well as its subregion the NAcbSh, and the pVTA (Ding et al., 

2013). The latter authors reported that this increase in glutamate was inversely related to 

decreases in glutamate clearance. Considerable research has examined the hypothesis that 

sensitized mesocorticolimbic and extended amygdala glutamate neurotransmission mediate 

in part alcohol and drug dependence. For example, it appears continued alcohol or drug 

intake results in a hypergluatmatergic state within mesocorticolimbic and extended 

amygdala reward circuits (Gass & Olive, 2008; Kryger & Wilce, 2010; Vengeliene, Bilbao, 

Molander, & Spanagel, 2008). Pre-clinical evidence supports clinical findings that alcohol 

acutely inhibits, and chronically sensitizes and upregulates glutamate neurotransmission, in 

brain reward regions of the mesocorticolimbic and extended amygdala circuits (e.g., 

Carlezon & Wise, 1996; Chandler, Newsom, Sumners, & Crews, 1993; Cui et al., 2013; 

Ding, Engleman, Rodd, & McBride, 2012; Floyd, Jung, & McCool, 2003; Gass & Olive, 

2008; Kapasova & Szumlinski, 2008; Nevo & Hamon, 1995; Nie, Madamba, & Siggins, 

1994; Nie, Yuan, Madamba, & Siggins, 1993; Tabakoff & Hoffman, 2013; Weitlauf & 

Woodward, 2008), which may be due, in part, to changes in glutamate clearance (Ding et al., 

2013; Kapasova & Szumlinski, 2008; Othman, Sinclair, Haughey, Geiger, & Parkinson, 

2002; Parks et al., 2002; Rao, Bell, et al., 2015; Sari et al., 2011; Smith, 1997; Smith & 

Zsigo, 1996; Thoma et al., 2011). Moreover, recent data showed that 10 weeks of operant 

binge-like self administration of solutions containing both ethanol and nicotine resulted in 

elevation of extracellular glutamate levels in the PFC (Deehan, et al., 2015).

The role of glutamate in alcohol consumption is prominent in binge-drinking as well (c.f., 

Bell et al., 2016; Rao, Bell, et al., 2015). Genetic animal models of alcoholism, the P rat in 

this case, engaging in binge-like drinking, which results in BACs of 80 mg% and higher 

(c.f., Bell et al., 2011, 2014), display numerous changes in glutamate receptor and/or 

subunits, transporters, scaffolding proteins as well as other associated gene expression levels 

in discrete brain regions of the mesocorticolimbic and extended amygdala circuits (Bell et 

al., 2016; Bell, Kimpel, et al., 2009; Coleman et al., 2011; McBride, Kimpel, et al., 2014; 

McBride et al., 2009, 2010; McBride, Rodd, et al., 2014; McClintick et al., 2015; Rodd et 

al., 2008). These changes in glutamatergic neurotransmission include enhanced receptor 

activation and intracellular downstream signaling cascades (Cozzoli et al., 2009; Szumlinski 

et al., 2007; Tabakoff et al., 2009). In support of this contention, glutamate receptor 

antagonists such as acamprosate and MPEP reduce binge-like drinking dose-dependently 

(Grace et al., 2007; Gupta et al., 2008). Increases in excitatory neurotransmission may be 

greater during periods of acute ethanol withdrawal, which is commonly associated with 

binge drinking, compared to more protracted withdrawal periods (Ward et al., 2009). This 

may support the hypothesis that binge alcohol abuse increases susceptibility to alcohol-

induced excitotoxic brain damage to a greater extent than continuous excessive drinking 

(e.g., Hunt, 1993; see also discussion and references in Bell et al., 2013). Overall, it is likely 

that glutamatergic neuroadaptations following repeated binge-like drinking behavior lead to 

a glutamate-GABA functional imbalance (Enna, 1997; Fadda & Rossetti, 1998; Szumlinski 

et al., 2007), and are responsible, in part, for withdrawal symptomology when ethanol access 

is terminated. This withdrawal symptomology in turn increases the negative reinforcement-

associated properties of continued binge drinking (Everitt & Robbins, 2005; Koob & 

LeMoal, 2008; Robinson & Berridge, 2008). These effects are consistent with a proposed 
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transition from binge/impulsive alcohol drinking to habitual/compulsive drinking to 

dependence (c.f., Koob, 2013; Koob & Volkow, 2010).

Systemically, the GRM1 antagonist CPCCOEt did not affect operant self-administration 

(Schroeder, Overstreet, & Hodge, 2005a, 2005b), whereas the GRM1 antagonist JNJ 

16259685 (Besheer, Faccidomo, Grondin, & Hodge, 2008a, 2008b) did significantly reduce 

operant self-administration by P rats. Slight procedural and/or motor effect differences may 

explain the difference between the former and latter findings from the same laboratory. The 

GRM2/3 antagonist LY404039 significantly reduced ethanol-seeking behavior as well as 

relapse, but did not affect the maintenance, of ethanol self-administration by P rats (Rodd et 

al., 2006). The GRM5 antagonists MPEP (Schroeder et al., 2005a, 2005b) and MTEP 

(Cowen, Djouma, & Lawrence, 2005) both reduced operant self-administration of ethanol by 

P rats. Intra-NAcb infusion of the GRM2/3 agonist LY379268 and GRM5 antagonist MPEP 

both significantly reduced operant ethanol self-administration by P rats (Besheer et al., 

2010). Much more research has been done exploring the effects of manipulating GLT1 

transporter levels, within subregions of the mesocorticolimbic reward circuit, on ethanol 

intake by P rats, to which we turn next.

The P rat has been very useful in assessing the efficacy of beta-lactam antibiotic, and similar, 

molecules in reducing alcohol intake, which appears to be due to a reversal of ethanol-

induced down-regulation of GLT1 levels and the concomitant increase in extracellular 

glutamate. For example, chronic free-choice drinking by P rats reduced GLT1 expression in 

the NAcb but not in the PFC, although xCT (the glutamate-cystine antiporter) was reduced 

in both regions (Alhaddad, Das, & Sari, 2014; Sari & Sreemantula, 2012; Sari, Sreemantula, 

Lee, & Choi, 2013). Ceftriaxone administered peripherally reversed ethanol-induced 

downregulation of GLT1 (both isoforms GLT1a and GLT1b) in the PFC and NAcb as well as 

xCT in the NAcb, PFC and Amyg (Alhaddad, Das, et al., 2014; Rao & Sari, 2014a, 2014b). 

Similarly, ceftriaxone reversed ethanol-induced increases in extracellular glutamate of the 

NAcb (Das et al., 2015). Research with other beta-lactam antibiotics in P rats has shown that 

amoxicillin, augmentin and ampicillin, which have the potential to be orally administered, 

reduced alcohol intake and increased GLT-1 expression in PFC and NAcb of P rats 

(Goodwani, Rao, Bell, & Sari, 2015; Rao, Goodwani, et al., 2015). Non-antibiotic 

compounds with a putative ability to upregulate GLT1 expression and/or activity have been 

tested in P rats as well. For example, GPI-1046, an analog of FK506, significantly reduces 

free-choice alcohol intake by male P rats with a concomitant increase in GLT1 expression 

levels in the NAcb and PFC (Sari & Sreemantula, 2012). Similar results were found for 

MS-153 with significant decreases in ethanol intake paralleling reversals of ethanol-induced 

GLT1 downregulation in the NAcb, Amyg and hippocampus (Aal-Aaboda, Alhadad, 

Osowik, Nauli, & Sari, 2015; Alhadad, Kim, et al., 2014). Finally, it has been demonstrated 

that upregulation of GLT1 (including both isoforms) and xCT by ceftriaxone and MS-153 

involves NF-kB and Akt signaling pathways (Alhaddad, Kim, et al., 2014; Rao, Saternos, 

Goodwani, & Sari, 2015).

An early study found that, globally, CNS Grm3 and Grm7 and the glycine-α1 subunit 

mRNA levels are lower in inbred P rats compared with inbred NP rats (Kimpel et al., 2007). 

More recently, Zhou and colleagues (2013) reported that P rats are homozygous for a Grm2 
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stop codon (Grm2*407) that essentially renders them a functional KO of Grm2. At the same 

time, Meinhardt and colleagues (2013) published their own work indicating GRM2 deficits 

are inversely related to drug-seeking behavior. As highlighted in Bell et al. (2016), a number 

of site-specific differences in glutamate-associated mRNA expression levels (see Figure 4) 

have been observed between P and NP rats (data for the pVTA came from McBride et al., 

2012; data for the CeA and NAcbSh came from McBride, Kimpel, McClintick, Ding, 

Hyytia, et al., 2013). As with differences between P and NP rats, a number of glutamate-

associated gene and/or protein expression changes are observed after ethanol drinking by P 

rats (adult data for the whole NAcb came from Rodd et al., 2008; adult data for the NAcbSh 

came from Bell, Kimpel, et al., 2009; McBride et al., 2010; adult data for the CeA came 

from McBride et al., 2010; adult data for the pVTA came from McBride, Kimpel, 

McClintick, Ding, Hauser, et al., 2013; adolescent data for the CeA came from McBride, 

Kimpel, et al., 2014; McBride, Rodd, et al., 2014; adolescent data for the DRN came from 

McClintick et al., 2015) (Figure 4). The protein changes after ethanol drinking in the NAcb 

and amygdala are from Obara et al. (2009). In general, differences, between P and NP rats, 

in accumbal ionotropic-associated glutamate receptor subunits are equally greater or lesser 

than that observed in the other line. However, metabotropic glutamate receptors are, for the 

most part, expressed lower in the P rat than in the NP within this brain region. Following 

ethanol consumption by adult P rats, expression levels for metabotropic glutamate receptors 

remained unchanged, whereas gene expression for ionotropic-associated glutamate receptor 

subunits are equally up- and down-regulated in the NAcb. In the CeA, the only observed 

difference was lower expression of Grm2 and Grm3 in P vs NP rats. However following 

ethanol drinking, all detected ionotropic subunit-associated and metabotropic glutamate 

receptor gene expression changes reflected up-regulation. This would suggest a strong 

neuroplastic response associated with ethanol-induced elevations in glutamate, such that 

substantial, enhanced glutamatergic neurotransmission is occurring in this brain region of 

the P rat. Similar observations have been seen in glutamate-associated protein levels of P rats 

(Obara et al., 2009) and electrophysiological activity in Marchigian sP rats (Herman et al., 

2016). As discussed in our recent glutamate review (Bell et al., 2016), the findings from P 

rats support the hyperglutamatergic hypothesis of alcohol and drug dependence. Given this, 

the P rat serves as a genetic animal model of alcoholism with characteristics of 

glutamatergic function paralleling clinical observations including the efficacy of topirmate in 

significantly reducing ethanol intake.

The Serotonergic System

The neurotransmitter serotonin (5-HT) is associated with addictive behaviors, appetite 

regulation, behavioral inhibition, mood, and cognitive functions. Thus, dysregulation of the 

5-HT system is implicated in the development of alcohol dependence. The serotonin 

transporter (SERT) clears 5-HT from the synapse through reuptake into the presynapse. 

There are seven families of 5-HT receptors (5-HT1–7) and at least 14 distinct 5-HT receptor 

subtypes (Barnes & Sharp, 1999), which makes the task of understanding which 5-HT 

receptor subtypes mediate addictive behaviors a complex one. The raphe nucleus, where 5-

HT neurons originate, sends 5-HT projections to numerous regions including the VTA, NAc, 

and PFC and studies have shown that the 5-HT system regulates DA neuronal activity in 

these subregions of the mesocorticolimbic system (Azmitia & Segal 1978; Halliday & Tork, 
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1989; Herve, Pickel, Joh, & Beaudet, 1987; Parent, Descarries, & Beaudet, 1981; Van 

Bockstaele, Cestari, & Pickel, 1994). For example, 5-HT activates VTA-DA neurons (Pessia, 

Jiang, North, & Johnson, 1994), induces DA release in VTA slices (Beart & McDonald 

1982), enhances DA release in NAc when locally applied to the VTA (Guan & McBride 

1989) or the dorsal raphe is activated (Yoshimoto & McBride, 1992), potentiates the 

excitatory actions of alcohol on VTA-DA neurons (Brodie, Trifunovic, & Shefner, 1995), 

and increases extracellular DA release in the PFC (Iyer & Bradberry, 1996).

Acute alcohol exposure appears to increase 5-HT activity (McBride, Chernet, Rabold, 

Lumeng, & Li, 1993; Smith & Weiss, 1999), whereas chronic exposure to alcohol may result 

in the development of tolerance to this effect (Smith & Weiss 1999). Clinical and/or pre-

clinical studies have reported deficiencies of 5-HT and/or its major metabolite 5-HIAA in 

the brains of human alcoholics (Pivac, Muck-Seler, Mustapic, Nenadic-Sviglin, & Kozaric-

Kovacic, 2004; Schmidt, Dufeu, Heinz, Kuhn, & Rommelspacher, 1997) and genetically 

selected alcohol-preferring rats (McBride, Chernet, Rabold, et al., 1993; Murphy et al., 

1987; Strother, Chernet, Lumeng, Li, & McBride, 2001; Zhou, Bledsoe, Lumeng, & Li, 

1991a, 1991b). Moreover, treatments that reduce 5-HT neurotransmission can elevate self-

administration of alcohol (Ciccocioppo, Angeletti, Colombo, Gessa, & Massi, 1999; Lyness 

& Smith, 1992). Drug treatments with antidepressants that affect 5-HT CNS activity have 

been shown to reduce craving and/or symptomatic behavior associated with alcohol 

dependence (c.f. Goodman, 2008) and alcoholic individuals with a polymorphism of the 5-

HT transporter can respond favorably to certain medication combinations (Johnson, 2010). 

Therefore, it has been proposed that modulation of the 5-HT system is a viable therapy for 

alcoholism in a sub-set of patients (Johnson 2005, 2010; Wrase, Reimoid, Puls, Kienast, & 

Heinz, 2006). Research on the involvement of 5-HT in binge alcohol drinking has been 

limited, with some evidence that binge drinking induces a blunted 5-HT response in the 

Scheduled High Alcohol Consumption (SHAC) mouse binge drinking model (Szumlinski et 

al., 2007). Additionally, acute withdrawal from alcohol after binge-like exposure leads to a 

wide-spread reduction in 5-HT and other neurotransmitters in several brain regions including 

those associated with the mesocorticolimbic system (Smith, Co, Mcintosh, & Cunningham, 

2008). In general, these findings indicate that serotonergic treatments may disrupt binge 

alcohol drinking and may interfere with the progression to alcohol dependence, in certain 

individuals. However, actual efficacy of 5HT manipulation to treat alcohol dependence in the 

clinic has been rather modest and may be relevant only in certain subpopulations of 

alcoholics.

Systemically, the 5HT precursor, D1L-5-HTP (McBride et al., 1990), reverse SERT 

modulator, fenfluramine (McBride et al., 1990); as well as agonists for the 5HT1, TFMPP 

(McBride et al., 1990), 5HT1A, 8-OH-DPAT (McBride et al., 1990), 5HT2, DOI (McBride et 

al., 1990), all reduced ethanol intake by P rats. However, most work has examined receptor 

antagonists, including WAY 100,635 (Zhou, McKinzie, Patel, Lumeng, & Li, 1998) which 

targets the 5HT1A receptor; amperozide/FG 5606 (Lankford, Bjork, & Myers, 1996; 

Overstreet, McArthur, Rezvani, & Post, 1997), and FG 5974 (Lankford et al., 1996; 

Overstreet et al., 1997; Piercy, Bjork, & Myers, 1996) which target 5HT2 receptors; as well 

as MDL 72222 (Rodd-Henricks, McKinzie, Edmundson, et al., 2000) and ICS 205-930 

(Rodd et al., 2010; Rodd-Henricks, McKinzie, Edmundson, et al., 2000) which target 5HT3 
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receptors, all of which reduce ethanol intake or the acquisition of operant ethanol self-

administration by P rats. Additionally, the SERT inhibitors fluoxetine (Murphy et al., 1985, 

1988; Rezvani et al., 2000; Zhou et al., 1998), fluvoxamine (Murphy et al., 1985) and DOV 

102,677 (Yang et al., 2012) all reduced ethanol intake by P rats. The last compound also 

inhibits the norepinephrine and dopamine transporters.

A number of differences in serotonin-associated protein (Ciccocioppo, Ge, Barnes, & 

Cooper, 1998; McBride, Chernet, Raboid, et al., 1993; McBride et al., 1997; McBride, 

Guan, Chernet, Lumeng, & Li, 1994; Murphy et al., 1987; Pandey, Lumeng, & Li, 1996) and 

mRNA expression levels (see Figure 5) have been reported between P and NP rats (data for 

the pVTA came from McBride et al., 2012; data for the CeA and NAcbSh came from 

McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013). Observed ethanol drinking-

induced changes in gene expression have come mainly from our work with adolescent 

bingeing P rats and in the DRN, from which all 5HT projections emanate (adult data for the 

whole NAcb came from Rodd et al., 2008; adult data for the NAcbSh came from Bell, 

Kimpel, et al., 2009, McBride et al., 2010; adult data for the CeA came from McBride et al., 

2010; adult data for the pVTA came from McBride, Kimpel, McClintick, Ding, Hauser, et 

al., 2013; adolescent data for the CeA came from McBride, Kimpel, et al., 2014; McBride, 

Rodd, et al., 2014; adolescent data for the DRN came from McClintick et al., 2015) (Figure 

5). For the most part, P rats have lower levels of central 5HT, 5HIAA, and 5HT receptors 

than NP rats. Following ethanol drinking by both adult and adolescent P rats, usually in 

binge-like form, nearly all detected changes in 5HT-associated gene expression represented 

down-regulation. These findings provide strong evidence that serotonergic deficits 

predispose an individual to abuse ethanol and, without intervention, foster continued 

excessive drinking.

The Noradrenergic and Corticotrophin Releasing Hormone (CRH) Systems

It is widely established that the central noradrenergic system serves a global function in 

neuromodulation, controlling vigilance, attention, and the sleep–wake cycle as well as 

contributing to learning and memory processes. Neuroanatomical evidence indicates that 

noradrenergic system in the brain arise from the cell bodies in the locus coeruleus and 

project to different cerebral regions and to the spinal cord (Cooper et al., 2002). Moreover, 

there is a complex interaction between norepinephrine (NE) and corticotrophin releasing 

factor (CRF), a neuropeptide strongly associated with central autonomic and stress activity, 

receptors within the locus coeruleus (Reyes, Bangasser, Valentino, & Van Bockstaele, 2014). 

In addition to major projections to the frontal cortex, (NE) neurons project to the limbic 

system (Flavin & Winder, 2013), including amygdala, bed nucleus of the stria terminalis, 

hippocampus, and hypothalamus where it is implicated in addiction (Becker, 2012; Koob, 

2013; Sofuoglu, Rosenheck, Petrakis, 2014; See also Al’ Absi, 2007), anxiety (Geiger, 

Neufang, Stein, & Domschke, 2014), attention (Geiger et al., 2014; Hegerl & Hensch, 

2014), cognition (Chandler, Waterhouse, & Gao, 2014), memory, mood (Gold, 2015), pain 

(Elman, Borsook, & Volkow, 2013; Strobel, Hunt, Sullivan, Sun, & Sah, 2014), post-

traumatic stress disorder (PTSD, Sofuoglu et al., 2014; Wimalawansa, 2014), sleep (Zeitzer, 

2013), suicide (Elman et al., 2013), and associated physiological processes (Klimek, 

Rajkowska, Luker, Dilley, et al., 1999; Moret & Briley, 2011).

Bell et al. Page 22

Int Rev Neurobiol. Author manuscript; available in PMC 2016 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NE in synaptic vesicles is derived from two sources. The synthesis of NE begins with the 

synthesis of dopamine from tyrosine and is transported into the vesicle by the vesicular 

monoamine transporter (VMAT). Once dopamine is synthesized and stored in synaptic 

vesicles, an enzyme called dopamine-β-hydroxylase further hydroxylates dopamine into NE. 

The synthesis of NE is different than the other neurotransmitters as they are usually made in 

the cytoplasm of the terminal buttons, whereas NE’s final stage of synthesis occurs in 

synaptic vesicles. Neurotransmission is initiated by an action potential which triggers the 

release of NE into the synaptic cleft. Released NE interacts with multiple adrenergic 

receptors, including presynaptic α2 and postsynaptic α1, β1 and β2 receptors. NE is 

removed from the synaptic cleft by both selective NE transporter (NET) as well nonselective 

transporters. NE’s stimulation of α2-adrenergic receptors provide’s feedback inhibition of 

further release. Cytoplasmic NE that is not sequestered in synaptic vesicles by VMAT is 

degraded into its metabolites by the enzyme monoamine oxidase, type a (MAO-A) (Cooper 

et al., 2002; Golan, Tashjian, Armstrong, & Armstrong, 2012; Krishnan & Nestler, 2008).

Evidence indicates that central NE activity modulates alcohol drinking behavior (Ehrenreich, 

Schuck, Stender, et al., 1997; Getachew, Hauser, Taylor, & Tizabi, 2010; See also Al’ Absi, 

2007). For example, selective NE uptake inhibition may normalize the behavioral and 

negative affective effects of alcohol (Getachew et al., 2010). Similarly, α1-adrenergic 

antagonists, α2-adrenergic agonists and β-adrenergic antagonists modulate alcohol drinking 

or associated withdrawal behavior (e.g., Gilpin & Koob, 2010; Riihioja, Jaatinen, Oksanen, 

et al., 1997; Walker, Rasmussen, Raskind, & Koob, 2008). There have been several studies 

investigating the adrenergic system’s role in excessive ethanol drinking by P rats using 

peripheral routes of administration. Prazosin, an α1-adrenergic antagonist (Menkes, 

Baraban, & Aghajanian, 1981), reduces home cage limited access drinking (Rasmussen, 

Alexander, Raskind, & Froehlich, 2009), relapse drinking (Froehlich, Hausauer, Fischer, 

Wise, & Rasmussen, 2015), operant self-administration (Verplaetse & Czachowski, 2015, 

Verplaetse et al., 2012), and operant ethanol-seeking (Verplaetse & Czachowski, 2015, 

Verplaetse et al., 2012). It also disrupts the acquisition of excessive ethanol drinking by P 

rats (Froehlich, Hausauer, Federoff, Fischer, & Rasmussen, 2013). Combining prazosin and 

naltrexone was more effective in reducing ethanol drinking than either compound alone, at 

least in P rats (Froehlich, Hausauer, & Rasmussen, 2013). Additonally, tolerance did not 

appear to develop following repeated daily treatments (Rasmussen, Kincaid, & Froehlich, 

2015). Another study found that clonidine, an α2-adrenergic receptor agonist, can also 

reduce ethanol drinking by P rats (Rasmussen, Alexander, Malone, Federoff, & Froehlich, 

2014; Rasmussen, Beckwith, Kincaid, & Froehlich, 2014). In addition, the triple monoamine 

uptake inhibitor (i.e., DAT, NET and SERT) DOV 102,677 reduced ethanol intake by P rats 

(Yang et al., 2012). Paralleling the preclinical findings, prazosin also has shown promise in 

the treatment of AUDs in humans (e.g., Simpson, Saxon, Meredith, et al., 2009). Overall, 

limited data suggest the involvement of the noradrenergic system in AUDs but substantial 

territory still needs to be explored regarding the role of NE and stress-associated systems in 

alcohol dependence.

The CRF system is localized, often colocalizing with NE, in multiple brain regions 

associated with addiction, anxiety, consummatory behavior, sleep, stress, learning and 

memory (Reul & Holsboer, 2002; Sajdyk, Shekhar, & Gehlert, 2004). These brain regions 
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include the raphe nucleus (Lukkes et al., 2011), multiple nuclei of the hypothalamus and the 

amygdala (Blume et al., 2009; Campbell, Grove, & Smith, 2003; Sajdyk et al., 2004; 

Smialowska, Wieronska, & Wedzony, 2002), pituitary (Stanley et al., 2004), cortex and 

lateral septum (Miyata, Shiota, Chaki, Okuyama, & Inagami, 2001), bed nucleus of the stria 

terminalis and hippocampus (Van Pett et al., 2000). Moreover, CRF-R1 receptors colocalize 

with cholinergic, noradrenergic and DAergic neurons in many of these brain regions as well 

(Sauvage & Steckler, 2001). There is increasing research into the role of CRH, NPY, 

glucocorticoids and HPA activity (the endogenous opioid system is discussed next) in 

alcohol dependence. One important reason for this is the fact that most earlier research on 

pharmacological treatments was conducted in animal models mimicking early stages of the 

dependence cycle, rather than the later stages observed in dependence. In the P rat, CRF 

protein expression levels are lower in the PFC, pyriform cortex, hypothalamus and amygdala 

compared with NP rats (Ehlers et al., 1992).

A subsequent study revealed that both CRF protein and mRNA are lower in the CeA of P 

rats compared with NP rats (Hwang, Stewart, Zhang, Lumeng, & Li, 2004). More recent 

work has shown that P rats have a polymorphism in the promoter region of the CRFR2 gene, 

which is not present in NP rats (Yong et al., 2014). This polymorpshism is associated with 

lower Crfr2 expression, especially in the amygdala; and, similar to innately reduced NPY 

levels in the amygdala, reduced Crfr2 expression appears to be directly associated with 

higher ethanol intake and anxiety in P rats (Yong et al., 2014). Regarding CRF, ligands 

targeting the CRF1 receptor, such as antalarmin and MPZP, reduce ethanol drinking by P 

rats but dependence is a requirement to see these effects (Gilpin, Richardson, & Koob, 2008; 

Gilpin, Stewart, & Badia-Elder, 2008; Heilig & Egli, 2006).

Similar to oservations for the cholinergic and DAergic systems, very few differences in 

adrenergic and CRF-associated mRNA expression differences (see Figure 6) between P and 

NP rats (data for the pVTA came from McBride et al., 2012; data for the CeA and NAcbSh 

came from McBride, Kimpel, McClintick, Ding, Hyytia, et al., 2013). The same is true for 

ethanol drinking-induced changes in P rats (adult data for the whole NAcb came from Rodd 

et al., 2008; adult data for the NAcbSh came from Bell, Kimpel, et al., 2009; McBride et al., 

2010; adult data for the CeA came from McBride et al., 2010; adult data for the pVTA came 

from McBride, Kimpel, McClintick, Ding, Hauser, et al., 2013; adolescent data for the CeA 

came from McBride, Kimpel, et al., 2014; McBride, Rodd, et al., 2014; adolescent data for 

the DRN came from McClintick et al., 2015) (Figure 6). However, most drinking protocols 

used for our recent microarray work have been binge-like and limited access in nature. Thus, 

the animals were probably not physically dependent on alcohol, despite being quite 

motivated to consume it and achieving BACs greater than 80–100 mg%.

The Opioid System(s)

There are several classes of endogenous opioids including enkephalins, endorphins, 

dynorphins, and endomorphins. These classes of ligands bind with some specificity to the 

delta, kappa and mu-receptors, respectively. One role of these peptides in the brain is to 

process information about rewarding stimuli, including alcohol (c.f., Oswald & Wand, 

2004). Therefore, it is not surprising that these peptides have been shown to influence the 
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development of alcohol abuse and dependence. Opioid receptors are found pre-synaptically 

on DAergic neurons of the mesocorticolimbic system (e.g., within the NAc) where they 

control the release of DA. Thus, opioid activity, similar to the glutamatergic and GABAergic 

systems, modulates DA activity in this “reward” neurocircuit.

Variations in opioid-related gene expression and function may contribute to high levels of 

alcohol consumption as well (e.g., Marini et al., 2013). For example, high alcohol drinking 

rats exhibit a greater level of mu-opioid receptor (MOR)-associated and enkephalin mRNA, 

compared to low alcohol drinking rats (Morganstern et al., 2012). For a review of 

neurobiological differences in the opioid system between selectively bred high and low 

alcohol-consuming rats see Bell et al. (2012). A great deal of existing evidence for the role 

of opioids in alcohol abuse and dependence comes from pharmacological experiments using 

the FDA-approved treatment for alcoholism, naltrexone (ReVia) and other non-specific 

opioid antagonists. Naltrexone blocks alcohol-induced changes in gene transcription in 

several receptor systems, including the mu-opioid system. Evidence from knock-out mice 

lacking MORs or dynorphin suggest that MORs and kappa-opioid receptors (KORs) are 

involved in the rewarding or reinforcing effects of alcohol (Blednov et al., 2006; Charbogne 

et al., 2014; Roberts et al., 2000).

There is a substantial literature on peripheral administration of opioid-associated ligands to 

reduce ethanol-drinking by P rats. Essentially, peripheral naltrexone, a pan-opioid 

antagonist, has been tested repeatedly (Coonfield, Kiefer, Ferraro, & Sinclair, 2004; Dhaher 

et al., 2012; June, Grey, et al., 1998; Sable, Bell, Rodd, & McBride, 2006) along with a 

study testing the effects of CeA microinjections (Foster et al., 2004). These publications all 

reported significant reductions in ethanol intake by male and female, adolescent and adult P 

rats using both home-cage and operant procedures. Peripheral testing with the pan-opioid 

antagonists, naloxone (Badia-Elder et al., 1999; June et al., 1991) and nalmefene (June, 

Grey, et al., 1998), also revealed significant reductions in ethanol intake by male and female, 

adolescent and adult P rats using both home-cage and operant procedures. Another study 

reported that nalmefene microinjections into the NAcb, Hipp and VTA significantly reduced 

operant alcohol self-administration by adult female P rats (June et al., 2004). A study 

examining the acquisition, maintenance and relapse operant self-administration of ethanol 

by adult female P rats found that the mu opioid receptor (MOR) antagonist LY255582 

significantly reduced all of these behaviors (Dhaher et al., 2012). Other studies examined the 

role of the delta opioid receptor (DOR) in mediating ethanol intake by adult P rats. Systemic 

treatment with the DOR antagonists naltriben, naltrindole and ICI 174,864 reduced home-

cage ethanol drinking (Krishnan-Sarin, Jing, et al., 1995; Krishnan-Sarin, Portoghese, Li, & 

Froehlich, 1995) and operant self-administration (June et al., 1999) of the same.

Despite a clear role for the opioid system (including ligand-associated changes in drinking) 

in alcohol drinking and consummatory behavior across reinforcers, very few changes 

induced by ethanol and/or differences between P and NP rats have been reported to date 

(Figure 7). Data of line-dependent differences for the pVTA came from McBride et al., 2012 

and data for the CeA and NAcbSh came from McBride, Kimpel, McClintick, Ding, Hyytia, 

et al., 2013. Data for ethanol drinking-induced changes in P rats (adult data for the whole 

NAcb came from Rodd et al., 2008; adult data for the NAcbSh came from Bell, Kimpel, et 
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al., 2009, McBride et al., 2010; adult data for the CeA came from McBride et al., 2010; 

adult data for the pVTA came from McBride, Kimpel, McClintick, Ding, Hauser, et al., 

2013; adolescent data for the CeA came from McBride, Kimpel, et al., 2014; McBride, 

Rodd, et al., 2014; adolescent data for the DRN came from McClintick et al., 2015) (Figure 

7). The findings thus far indicate that multiple opioid systems are involved in excessive 

ethanol drinking and modulation of this system consistently reduces ethanol intake 

significantly. Thus, the P rat also displays the relatively robust reduction in alcohol abuse 

induced by the pan-opioid receptor antagonist naltrexone, let alone similar observations for 

more selective mu- and delta-opioid antagonists.

The Neuropeptide Y (NPY) system

Neuropeptide Y (NPY) is a 36 amino acid peptide abundantly expressed throughout the 

central and peripheral nervous systems (Allen, Adrian, Allen, et al., 1983) and acts centrally 

on target cells through the G-protein, coupled NPY receptors Y1, Y2, and Y5 (Dumont, 

Satoh, Cadieux, et al., 1993; Fetissov, Kopp, & Hokfelt, 2004; Wolak et al., 2003). NPYir 

cell bodies have been found in the hypothalamus, hippocampus, amygdala, brain stem nuclei 

and ganglions of the sympathetic and parasympathetic nervous systems. There is evidence 

that NPY is locally synthesized (van den Pol, 2012), therefore its expression is not 

dependent upon projection neurons. For the most part, NPY neurons are interneurons and 

found in most brain regions except for the thalamus and the cerebellum, although Y-

receptors have been detected in the thalamus (e.g., Kaji, 2013). NPY is implicated in food 

intake and energy balance, anxiety, stress, autonomic function, learning and memory (c.f., 

Parker, 2013). Given the role of stress and anxiety (at least their comorbidity for the latter) in 

alcohol and drug dependence, it is not surprising that NPY, and for that matter the 

interaction of NPY and CRF (e.g., Thorsell, 2010), is implicated in the development and 

maintenance of alcohol and/or drug dependence (c.f., Al’Absi, 2007). Regarding the NPY-

CRF interaction, There appears to be a confluence of activity from multiple systems in the 

CeA that mediates anxiety and alcohol dependence with a complex interaction of the CRF, 

GABAergic, glutamatergic and NPY systems (Gilpin, Herman, & Roberto, 2015; Roberto, 

Gilpin, & Siggins, 2012). Additionally, cAMP response element-binding protein (CREB), 

brain derived neurotrophic factor (BDNF), activity-regulated cytoskeleton (Arc) associated 

protein are involved in the modulation of CeA-NPY activity and, by extension, are involved 

in anxiety and alcohol dependence as well (c.f., Pandey, 2003; Wand, 2005).

Centrally, site-specific injections of NPY point to the amygdala (Gilpin, Richardson, et al., 

2008; Gilpin, Stewart, et al., 2008; Pandey, Chartoff, Carlezon, et al., 2005) and 

hypothalamus (Gilpin, Stewart, Murphy, & Badia-Elder, 2004; Kelley, Nannini, Bratt, & 

Hodge, 2001) as possible primary neuroanatomical loci for NPY-induced alterations in 

ethanol drinking. Previous studies suggest that NPY is a major factor which distinguishes 

the ethanol-drinking behavior of P vs NP rats (Cowen, Chen, & Lawrence, 2004; Pandey, 

Carr, Heilig, Ilveskoski, & Thiele, 2003; Thiele & Badia-Elder, 2003). P rats display lower 

levels of NPY immunoreactivity in various regions of the brain, including the CeA, 

hippocampus and the FC with higher levels in the paraventricular hypothalamic nucleus and 

arcuate nucleus of the hypothalamus (Ehlers, Li, Lumeng, et al., 1998; Hwang, Zhang, 

Ehlers, Lumeng, & Li, 1999). Furthermore, decreased levels of NPY are associated with 
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increased anxiety in P rats (Spence et al., 2005; Stewart et al., 1993), and ICV infusion of 

NPY has been shown to reduce ethanol intake in the P rat (Gilpin, Stewart, Murphy, Li, & 

Badia-Elder, 2003) (Fig. 8). Genomically, NPY is localized in an interval that is highly 

associated with alcohol preference and consumption, mapping to a quantitative trait locus 

(QTL) with a lod score of 9.2 on rat chromosome 4, using an F2 population bred from iP 

and iNP rats (Bice, Foroud, Bo, et al., 1998; Carr, Foroud, Bice, et al., 1998).

11. Pharmacogenomics and Alcoholism/Addiction

The interest in using pharmacogenomic research to treat alcohol dependendence spans more 

than a decade (e.g., Anton et al., 2008; Goldman, Oroszi, O’Malley, & Anton, 2005). 

Numerous studies have identified a number of single nucleotide polymorphisms that are 

associated with alcohol dependence and/or drug codependence including (a) CHRM2 (Luo 

et al., 2005; Wang et al., 2004), CHRNA4 (Kim et al., 2004), CHRNA5 (Saccone et al., 

2007; Wang et al., 2009) as well as the CHRNA5-CHRNA3-CHRNB4 cluster and alcohol 

abuse/dependence (Schlaepfer et al., 2008); (b) DAT (Heinz, Goldman, Gallinat, Schumann, 

& Puls, 2004; see also Bhaskar & Kumar, 2014 for this and other DA-associated 

polymorphisms), DA beta hydroxylase (DBH) and alcohol dependence in women (Preuss et 

al., 2013), DRD3 and alcohol craving (Agrawal et al., 2013) as well as DA dysfunction and 

Cloninger Type I alcoholism (Leggio & Addolorato, 2008); (c) GABRA1, GABRA2, 

GABRB3, GABRG3 and alcohol dependence or sensitivity to its intoxicating effects during 

the ascending slope of the BAC curve (e.g., Bierut et al., 2010; Dick et al., 2004; Dick et al., 

2006; Edenberg et al., 2004; Enoch, Schwartz, Albaugh, Virkkunen, & Goldman, 2006; 

Haughey et al., 2008; Noble et al., 1998); (d) GRIK3 (Grzywacz, Malecka, Suchanecka, 

Bienkowski, Samochowiec, 2013) and GRIN2A (Domart et al., 2012) with alcohol 

dependence as well as GRM8 and event-related potential (ERP) theta power and alcohol 

dependence (Chen et al., 2009); (e) 5HT dysfunction and Cloninger Type II alcoholism 

(Leggio & Addolorato, 2008), HTR1A and alcohol as well as nicotine co-dependence (Zuo 

et al., 2013), HTR1B and alcohol as well as multiple drug abuse (Cao, LaRocque, & Li, 

2013; Contini et al., 2012), HTR2A and alcohol as well as heroin abuse (Cao et al., 2014), 

HTR7 and alcohol dependence as wel as electrophysiological measures (Zlojutro et al., 

2010; Zuo et al., 2014), alcohol dependence and SERT (e.g., Heinz et al., 2004; c.f., 

Johnson, 2010; McHugh, Hofman, Asnaani, Sawyer, & Otto, 2010; Plemenitas et al., 2015); 

(f) OPRM1 and level of response to ethanol in Native Americans (Ehlers, Lind, & 

Wilhelmsen, 2008), OPRM1 polymorphisms and naltrexone’s efficacy for treating alcohol 

dependence (e.g., Jonas et al., 2014), as well as PDYN and OPRK1 with alcohol dependence 

(Gerra et al., 2007; Williams et al., 2007; Xuei et al., 2006); (g) CRFR1 polymorphism with 

P3 ERP and alcohol dependence (Chen et al., 2010); and (h) NPY and its receptor’s 

association with alcohol as well as multiple drug abuse and dependencies (Bhaskar et al., 

2013; Frances et al., 2011; Okahisa et al., 2009; Sato et al., 2010; Wetherill et al., 2008). 

While there is overlap in the ethanol affected neurotransmitter and neuropeptide systems 

between the clinical alcohol dependent population and the P rat, much more research needs 

to be done.
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12. Conclusions

The present chapter sought to present the existing neuropharmacological findings on P rats 

in a more holistic manner than done in the past. While previous reviews listed many 

differences between the P rat and its control line the NP rat, this was mostly done in tabular 

form or buried in the text. By using figures of the primary neurotransmitter and neuropeptide 

systems examined thus far in the P rat, our objective was to map the published findings in 

the context of the projections and/or localization of each respective neuromodulatory 

system. This chapter also outlines how the P rat has neurochemical, physiological and 

behavioral characteristics often seen in individuals with alcohol, and in some cases drug, 

dependence. Finally, it has been proposed that an animal model of alcoholism should display 

similar pharmacological efficacy as that seen in the alcohol dependent treatment population. 

Because excessive alcohol is under genetic control, individual differences are expected in 

animal models just as individual differences prevail in the clinical treatment population. 

Thus, an animal model of alcoholism also should display some pharmacological treatment 

validity (Dyr & Kostowski, 2008; Litten et al., 2012; Overstreet, Rezvani, Djouma, Parsian, 

& Lawrence, 2007).

For the cholinergic system, the P rat displays a modest effect of varenicline on ethanol 

intake. This parallels the clinical literature in that there are mixed findings for the efficacy of 

varenicline, especially in the context of smokers vs nonsmokers and/or co-morbid 

psychaitric conditions. For the DAergic system, findings with the P rat do not match clinical 

observations; such that whereas manipulations of the DAergic system consistently affect 

ethanol intake in P rats, this is not true in the treatment setting. For the GABAergic system, 

the results are mixed. GABAergic modulators are often used during ethanol withdrawal, but 

cross-tolerance with the effects of ethanol and inherent abuse liability limit their usefulness 

beyond acute care. One exception should be noted and that is topiramate, which has shown 

similar efficacy in P rats, other animal models and a tested treatment population. Topiramate, 

as an anticonvulsant, modulates both GABAergic and glutamatergic activity. Acamprosate, 

another modulator of the glutamatergic system, has demonstrated modest effects in the 

clinical treatment population, but only has marginal effects in P rats. Similar to the DAergic 

system, modulators of the serotonergic system have had limited success in the clinical 

setting even though robust effects are seen in P rats. Ondansetron is one exception, with 

mixed findings in both P rats and human laboratory subjects. In addition, it appears that 

variances in the SERT gene (5htt) can determine some pharmacotherapeutic efficacy 

supporting a role for pharmacogenomics. For the noradrenergic system, prazosin 

consistently decreases ethanol intake in P rats and promising results are being seen in human 

clinical studies as well. For the opioid system, naltrexone consistently reduces ethanol intake 

in P rats and while some clinical studies report robust effects, other clinical studies have 

reported modest to marginal results. Similar to observations of 5htt polymorphisms, 

variances in the OPRM1, and possibly OPRK1, gene appear to have some predictive validity 

for naltrexone’s efficacy in the treatment of alcohol dependence. A final example, which 

does not fall into any of the systems discussed in this chapter, is ibudilast and more selective 

inhibitors of phosphodiesterase 4 (PDE4, e.g., Bell et al., 2015; Franklin, Hauser, Lasek, 

Bell, & McBride, 2015). Robust findings in P rats and multiple other animal models parallel 
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early results from clinical laboratory studies. Regarding these early findings, it should be 

noted that in 2015 the Food and Drug Administration (FDA) gave ibudilast a fast-track 

designation for the treatment of methamphetamine dependence. While considerable progress 

has been made in the treatment of alcohol and drug dependence, considerable more work 

needs to be done. One future direction for research with the P rat is to determine if this 

genetic animal model will self-administer other drugs of abuse. Present work, and some 

previous work, from our laboratory indicates P rats will readily self-administer nicotine and 

cocaine into discrete regions of the mesocorticolimbic reward circuit. Intravenous work has 

not been published yet, but the results look promising for this route of administration as 

well. These findings suggest that the P rat may be a genetic animal model of polysubstance 

abuse/dependence.

To date, the vast majority of the genomic information about the P rat has come from 

microarray and RT-PCR techniques. Future research should use next-generation DNA 

sequencing to identify genomic signatures of selection between P and NP rats and next-

generation RNA sequencing methodologies to analyze allele-specific expression of genes in 

F1 crosses of these lines (e.g., Farris & Mayfield, 2014; Wang, Kapoor, & Goate, 2012). 

This will help move the field from QTL analyses to quantitative trait nucleotide [QTN; i.e., 

(SNPs)] and quantitative trait gene (QTG) analyses (e.g., Ehlers, Walter, Dick, Buck, & 

Crabbe, 2010; Milner & Buck, 2010; Spence et al., 2009). By doing so, the level of genomic 

resolution and the power of these analyses will be exponentially increased over the existing 

techniques. In addition, by localizing genetic variation to genes and SNPs, research on the 

role of epigenomics/epigenetics (e.g., Moonat et al., 2010; Renthal & Nestler, 2009) in 

alcohol preference can also be advanced. These advances will allow investigators to combine 

traditional hypothesis-driven research based on deductive reasoning with unprejudiced 

genome association studies. These approaches will delineate putative neuromolecular 

pathways (e.g., intracellular cascades) mediating alcohol dependence and identify possible 

new drugable targets to prevent and/or treat alcohol abuse and dependence.

Another direction for future research is the use of emerging and evolving neuroscience 

methodologies to examine the role of second messenger systems, synaptic plasticity, protein-

protein interactions, gene-gene interactions, and the role of noncoding RNAs (e.g., Clerget, 

Bouguignon-Igel, & Rederstorff, 2015; Gedik et al., 2015; Gorini, Bell, & Mayfield, 2011; 

Gorini, Harris, & Mayfield, 2014; Manzardo, McGuire, & Butler, 2015; Nunez et al., 2013; 

Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012). Emerging bioinformatic strategies 

would synthesize the large amounts of data obtained with high throughput gene and/or 

protein expression techniques (e.g., Gorini et al., 2011; Gorini et al., 2014). Presently, this 

synthesis has started to reveal the complex neurobiology of alcoholism and the multiple 

roles of genetics in its development through functional and genetical genomics (e.g., 

Spanagel et al., 2013; Zuo et al., 2014). We believe that continued research with the P rat 

using these more advanced genomic, proteomic and bioinformatic techniques will yield new 

information on molecular substrates to target for repurposing existing FDA-approved 

medications, or those that are in advanced clinical trials, to treat alcohol and drug abuse/

dependence.
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Figure 1. 
Innate differences in gene expression between P and NP rats, ethanol-drinking induced 

changes in gene expression of P rats as well as pharmacological changes in cholinergic 

activity and/or effects. AcbSh = nucleus accumbens shell; Amyg = amygdala; CeA = central 

amygdala; Ctx = cortex; CP = caudate-putamen; DB = diagonal band of Broca; DMTN = 

dorsal medial thalamic nucleus; DRN = dorsal raphe nucleus; FC = frontal cortex; Hipp = 

hippocampus; Hyp = hypothalamus; LC = locus coereleus; LDT = lateral dorsal tegmentum; 

LHab = lateral habenula; MS = medial septum; NAcb = nucleus accumbens; NB = nucleus 

basalis; OB = olfactory bulb; OT = olfactory tubercle; PAG = periaqueductal grey; PFC = 

prefrontal cortex; PPT = pedunculopontine tegmentum; SC = superior colliculus; SN = 

substantia nigra; VP = ventral pallidum; VTA = ventral tegmental area. Dark arrows indicate 

cholinergic projections. Up-arrow indicates an increase, whereas down-arrow indicates a 

decrease in expression levels, activity or consumption. Short filled arrow = interneuron.
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Figure 2. 
Innate differences in gene (italics) and/or protein expression between P and NP rats, ethanol-

drinking induced changes in gene expression of P rats as well as pharmacological changes in 

dopaminergic activity and/or effects. Arc = arcuate nucleus of the hypothalamus; BLA = 

basolateral amygdala; BNST = bednucleus of the stria terminalis; ICSA = intracranial self-

administration; IA = intercalated amygdala; LA = lateral amygdala; LH = lateral 

hypothalamus; NAcbCo = nucleus accumbens core; Pit = pituitary; pVTA = posterior ventral 

tegmental area. For other abbreviations see Figure 1 legend. Dark arrows indicate 

dopaminergic projections. Up-arrow indicates an increase, whereas a down-arrow indicates a 

decrease in expression levels, activity or consumption/self-administration. *, indicates 

multiple studies.

Bell et al. Page 66

Int Rev Neurobiol. Author manuscript; available in PMC 2016 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Innate differences in gene (italics) and/or protein expression between P and NP rats, ethanol-

drinking induced changes in gene expression of P rats as well as pharmacological changes in 

GABAergic activity and/or effects. BDZ = benzodiazepine; Cg = cingulate cortex; GP = 

globus pallidus; HAB = habenula; mTEG = medial tegmentum; SEPT = septum; THAL = 

thalamus; wAmyg = whole amygdala; wNAcb = whole nucleus accumbens. For other 

abbreviations see Figures 1 and 2 legend. Dark arrows indicate GABAergic projections. Up-

arrow indicates an increase, whereas a down-arrow indicates a decrease in expression levels, 

activity or consumption/self-administration. Short filled arrow = interneuon.
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Figure 4. 
Innate differences in gene (Italics) and/or protein (Upper Case) expression between P and 

NP rats, ethanol-drinking induced changes in gene expression of P rats as well as 

pharmacological changes in glutamatergic activity and/or effects. WD = withdrawal. For 

other abbreviations see Figures 1, 2 and 3 legends. Dark arrows indicate glutamatergic 

projections. Up-arrow indicates an increase, whereas a down-arrow indicates a decrease in 

expression levels, activity or consumption/self-administration.
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Figure 5. 
Innate differences in gene (italics) and/or protein expression between P and NP rats, ethanol-

drinking induced changes in gene expression of P rats as well as pharmacological changes in 

serotonergic activity and/or effects. mAcb = medial nucleus accumbens; LA = lateral 

amygdala; PC = pyriform cortex cortex; RN = raphe nuclei; TC = temporal cortex; vHipp = 

ventral hippocampus. For other abbreviations see Figures 1, 2, 3 and 4 legends. Dark arrows 

indicate serotonergic projections. Up-arrow indicates an increase, whereas a down-arrow 

indicates a decrease in expression levels, activity or consumption/self-administration.
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Figure 6. 
Innate differences in gene (italics) and/or protein expression between P and NP rats, ethanol-

drinking induced changes in gene expression of P rats as well as pharmacological changes in 

noradrenergic and corticotrophic releasing factor-system activity and/or effects. ACTH = 

adrenal corticotrophic hormone; MC4R = melanocortin-4 receptor. For other abbreviations 

see Figures 1, 2, 3, 4 and 5 legends. Dark, solid arrows indicate noradrenergic projections. 

Dark, thick, dashed arrows indicate CRF projections. Dark, thin, dashed arrows point to 

nuclei with glucocorticoid binding sites and activity. Up-arrow indicates an increase, 

whereas a down-arrow indicates a decrease in expression levels, activity or consumption/

self-administration.
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Figure 7. 
Innate differences in gene (first letter upper case others lower case and in italics) and/or 

protein expression between P and NP rats, ethanol-drinking induced changes in gene 

expression of P rats as well as pharmacological changes in opioid-system activity and/or 

effects. DOR = delta opioid receptor; KOR = kappa opioid receptor; MOR = mu opioid 

receptor; Pdyn = prodynorphin; Penk = proenkephalin; POMC = proopiomelanocortin. For 

other abbreviations see Figures 1, 2, 3, 4, 5 and 6 legends. When multiple opioid precursors 

(PDYN, PENK or POMC) and/or opioid receptors (DOR, KOR or MOR) are localized in the 

brain region, the order of density are presented from highest (top) to lowest (bottom). Dark, 

solid arrows indicate opioid projections. Short light-shaded arrows represent opioid 

containing interneurons. Up-arrow indicates an increase, whereas a down-arrow indicates a 

decrease in expression levels, activity or consumption/self-administration.
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Figure 8. 
Innate differences in gene (italics) and/or protein expression between P and NP rats, ethanol-

drinking induced changes in gene expression of P rats as well as pharmacological changes in 

the neuropeptide Y (NPY)-system activity and/or effects. ARC = activity-regulated 

cytoskelten-associated protein; BDNF = brain derived neurotrophic factor. For abbreviations 

see Figures 1, 2, 3, 4, 5, 6 and 7 legends. Dark, solid arrows indicate NPY projections. It is 

important to remember that NPY is also synthesized locally in the brain. Up-arrow indicates 

an increase, whereas a down-arrow indicates a decrease in expression levels, activity or 

consumption/self-administration.
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