32 research outputs found

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants.

    Get PDF
    BACKGROUND: Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. METHODS: We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. FINDINGS: The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. INTERPRETATION: Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. FUNDING: WHO

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. Copyright (C) 2021 World Health Organization; licensee Elsevier

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings

    Regulation of reserve carbohydrates metabolism in Neurospora crassa: responses to pH, calcium and carbon source stresses and to the biological clock

    No full text
    The fungus Neurospora crassa, a model organism in studies of gene expression, metabolism, photobiology and circadian rhythm, is able to respond and adapt to different environmental stresses, such as heat shock, pH changes, nutrient limitation, osmotic stress, and others. Besides that, N. crassa has the genome sequenced and collections of knocked-out strains are avalaible to the scientific community. A systematic screening analysis performed with mutant strains in genes encoding transcription factors led to identify proteins involved in the glycogen metabolism regulation in this fungus. Glycogen and trehalose are storage carbohydrates that functions as a carbon and energy reserve. Trehalose can also protect membranes and proteins, increasing the tolerance to adverse conditions. In this work, some transcription factors were functionally characterized regarding their role in glycogen and trehalose metabolism regulation. The first condition investigated was the influence of the circadian clock in the glycogen metabolism. We observed that the glycogen accumulation and the expression of genes encoding glycogen synthase (gsn) and glycogen phosphorylase (gpn) are rhythmic in a wild-type strain and dependent on the FREQUENCY (FRQ) oscillator, the core component of the N. crassa circadian clock. The VOS-1 transcription factor, that is controlled by clock and can act in the connection between clock and glycogen metabolism, binds to gsn and gpn promoters rhythmically. However, the expression of gsn and gpn and the glycogen accumulation are still rhythmic in vos-1 strain, suggesting that not only VOS-1 but additional transcription factors could contribute to glycogen accumulation rhythmicity. Under pH and calcium stress, the PAC-3 transcription factor was investigated. First, we characterized the protein components of the pH signaling pathway, using the pal and pac-3 mutant strains. The mutants present high melanin production and inability to grow under alkaline pH. PAC-3 undergoes only one proteolytic cleavage, binds to pal promoters and regulates the expression of some pal genes under alkaline pH. PAC-3 is predominantly nuclear under alkaline condition and is able to bind to importin-α in vitro. Moreover, the components of pH signaling showed high glycogen and trehalose accumulation under normal and alkaline pH when compared to the wild-type. PAC-3 binds to some glycogenic and trehalose genes, and regulates their expression. Under calcium stress, pac-3 was induced and the carbohydrates metabolism was differently regulated. Finally, the CRE-1 transcription factor and the RCO-1 and RCM-1 cofactors, orthologs of the Mig1-Tup1-Ssn6 yeast complex, respectively, were investigated regarding their regulation of the glycogen metabolism under different carbon sources. CRE-1 is involved in catabolic repression and plays a role as repressor in glycogen regulation. CRE-1 binds in vivo and in vitro to gsn and gpn promoters, regulating their expression. This transcription factor is present in nucleus and cytoplasm in derepressed and starved conditions. RCO-1 and RCM-1 also regulated the glycogen accumulation, the glycogen synthase activity and the expression of some glycogenic genes, but do not play a major role in glycogen metabolism, while CRE-1 is the central regulator.O fungo Neurospora crassa, um organismo modelo em estudos de expressão gênica, metabolismo, fotobiologia e ritmo circadiano, é capaz de responder e se adaptar a diferentes condições de estresse, tais como choque térmico, alterações de pH, limitação de nutrientes, estresse osmótico, entre outras. Além disso, N. crassa tem seu genoma sequenciado e coleções de linhagens mutantes estão disponíveis para a comunidade científica. Uma análise sistemática utilizando linhagens mutantes em genes que codificam fatores de transcrição permitiu a identificação de proteínas envolvidas na regulação do metabolismo do glicogênio neste fungo. Glicogênio, juntamente com trealose, são carboidratos de reserva que funcionam como fonte de carbono e energia. A trealose também pode proteger membranas e proteínas, aumentando a tolerância a condições adversas. Neste trabalho, alguns fatores de transcrição foram funcionalmente caracterizados em relação as suas participações na regulação do metabolismo de glicogênio e trealose. A primeira condição investigada foi a influência do relógio circadiano sob o metabolismo de glicogênio. Observamos que o acúmulo de glicogênio e a expressão dos genes codificadores das enzimas glicogênio sintase (gsn) e glicogênio fosforilase (gpn) foram rítmicos em uma linhagem selvagem do fungo, e dependentes do oscilador FREQUENCY (FRQ), principal componente do relógio de N. crassa. O fator de transcrição VOS-1, o qual é controlado pelo relógio e pode atuar na conexão do relógio ao metabolismo de glicogênio, se liga aos promotores gsn e gpn ritmicamente. Entretanto a expressão dos genes gsn e gpn e o acúmulo de glicogênio se mantiveram rítmicos na linhagem vos-1, sugerindo que além de VOS-1 outros fatores de transcrição poderiam contribuir para a ritmicidade do acúmulo de glicogênio. Sob condições de estresse de pH e cálcio, o fator de transcrição PAC-3 foi investigado. Primeiro, foram caracterizadas as proteínas envolvidas na via de sinalização de pH, usando as linhagens mutantes nos genes pal e pac-3. Os mutantes apresentam alta produção de melanina e incapacidade de crescer em pH alcalino. PAC-3 sofre uma única clivagem proteolítica, se liga aos promotores dos genes pal e regula a expressão de alguns destes genes em meio alcalino. PAC-3 é predominantemente nuclear sob condições alcalinas e é capaz de se ligar à importina-α in vitro. Além disso, os componentes de sinalização de pH mostraram acumular mais glicogênio e trealose sob pH normal e alcalino quando comparado à linhagem selvagem. PAC-3 se liga a alguns genes do metabolismo de glicogênio e trealose, regulando-os. Sob estresse de cálcio, a expressão de pac-3 foi induzida e o metabolismo de carboidratos diferentemente regulado. Finalmente, o fator de transcrição CRE-1 e os cofatores RCO-1 e RCM-1, ortólogos ao complexo Mig1-Tup1-Ssn6 de levedura, respectivamente, foram investigados na regulação do glicogênio sob diferentes fontes de carbono. CRE-1 está envolvido na repressão catabólica e atua como repressor na regulação do glicogênio. CRE-1 se liga in vivo e in vitro aos promotors gsn e gpn, regulando suas expressões. Este fator de transcrição está presente no núcleo e no citoplasma em condições de derepressão e baixa fonte de carbono. RCO-1 e RCM-1 também regulam o acúmulo de glicogênio, a atividade glicogênio sintase e alguns genes do glicogênio, mas não desempenham um papel primordial, enquanto CRE-1 mostrou ser um regulador central.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Metabolismo de glicogênio e relógio biológico em Neurospora crassa: fatores e cofatores de transcrição envolvidos nos processos

    No full text
    O fungo filamentoso Neurospora crassa é um organismo modelo utilizado na compreensão de diversos aspectos da biologia dos eucariotos, e tem sido usado, em nosso laboratório, para estudos celulares básicos, como os mecanismos bioquímicos e moleculares envolvidos na regulação do metabolismo de glicogênio. Uma análise sistemática realizada com uma coleção de linhagens mutantes em genes codificadores de fatores de transcrição permitiu identificar várias proteínas potencialmente envolvidas na regulação do metabolismo do glicogênio neste organismo. Algumas linhagens mutantes apresentaram alterações no perfil de acúmulo de glicogênio e na expressão dos genes que codificam as enzimas glicogênio sintase (gsn) e glicogênio fosforilase (gpn) quando comparadas à linhagem selvagem. Dentre estas, duas linhagens mutantes em genes que codificam para a proteína RCO-1 (regulator of conidiation-1) e para uma proteína hipotética foram selecionadas para o presente estudo, levando em consideração que ambas linhagens também apresentaram variações na progressão do ciclo celular quando analisadas por citometria de fluxo. Como a proteína RCO-1 é uma provável parceira da proteína RCM-1 (regulator of conidiation and morphology-1), então a linhagem mutante no gene codificador de RCM-1 foi incluída neste trabalho. Portanto, foi feita a caracterização de um fator de transcrição anotado como proteína hipotética e de dois cofatores transcricionais RCO-1 e RCM-1, ortólogos ao complexo corepressor Tup1-Ssn6 de Saccharomyces cerevisiae. As proteínas RCO-1, RCM-1 e a codificada pela ORF NCU09739 estão envolvidas na regulação do metabolismo do glicogênio, atuando na regulação da expressão dos genes gsn e/ou gpn. Estas mesmas proteínas também são necessárias para o crescimento e desenvolvimento normal do...The filamentous fungus Neurospora crassa is a model organism used to understand various aspects of eukaryotic biology. It has been used, in our laboratory, in basic cellular studies, such as the biochemical and molecular mechanisms involved in the regulation of glycogen metabolism. A systematic analysis performed with a collection of mutant strains in genes encoding transcription factors led to the identification of proteins likely involved in the regulation of glycogen metabolism in this organism. Some mutant strains showed changes in the glycogen accumulation profile and in the expression of the genes encoding the enzymes glycogen synthase (gsn) and glycogen phosphorylase (gpn) when compared to the wild-type strain. Among these, two mutant strains in the genes encoding RCO-1 (regulator of conidiation-1) and a hypothetical proteins were selected for the present study. Both strains presented variations in cell cycle progression when analyzed by flow cytometry. RCO-1 protein is likely a partner of RCM-1 (regulator of conidiation and morphology-1) protein, thus the mutant strain in the gene encoding RCM-1 was included in this work. Therefore, we performed the characterization of a transcription factor annotated as a hypothetical protein and the two transcriptional cofactors RCO-1 and RCM-1, orthologs of the Saccharomyces cerevisiae corepressor complex Tup1-Ssn6. RCO-1, RCM-1 and the product of the ORF NCU09739 are involved in the regulation of glycogen metabolism, acting in the regulation of gsn and/or gpn gene expression. The same proteins are necessary for growth and normal development of the fungus, since the mutant strains showed changes in hyphae length, pigmentation and conidiation. Gene expression analysis showed that the NCU09739 gene was highly expressed at the beginning of the conidia germination, showing the importance... (Complete abstract click electronic access below)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways

    No full text
    Abstract Background Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. Results We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. Conclusions We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses

    Additional file 3: Figure S2. of Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways

    No full text
    Glycogen quantification in the wild-type, Δpac-3 mutant and Δpac-3 pac-3 + complemented strains at normal growth pH (5.8) and alkaline pH (7.8). Mycelial samples cultured at pH 5.8 (zero) at 30 °C for 24 h and shifted to pH 7.8 for 1 h were used for glycogen quantification. The asterisks for the Δpac-3 data indicate significant differences compared to the wild-type strain at the same condition (Student’s t-test, P < 0.01). The results represent the average of three independent experiments. Bars indicate the standard deviation from the biological experiments. (TIFF 317 kb

    Additional file 4: Figure S3. of Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways

    No full text
    Multiple sequence alignment of the N. crassa protein codified by the ORF NCU07952 and the CrzA proteins from A. fumigatus (XP_750439.1) and A. nidulans (BAE94327.1), and the CRZ-1 protein from Trichoderma reesei (ETS01683.1). The C2H2 zinc finger DNA binding domain at the C-terminus is highlighted by asterisks and the putative calcineurin interaction site is indicated by an upper line. ClustalW ( http://www.ebi.ac.uk/Tools/msa/clustalw2/ ) was used for sequence alignment. Identical amino acids are shaded in black and conserved amino acids are shown in gray. (DOC 48 kb

    The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

    No full text
    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms
    corecore