524 research outputs found

    Parametric power spectral density analysis of noise from instrumentation in MALDI TOF mass spectrometry

    Get PDF
    Noise in mass spectrometry can interfere with identification of the biochemical substances in the sample. For example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumentation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrometers used in this study may not be completely shielded from the internal or external electrical noise sources. However, according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass spectra significantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling

    Realization of a single Josephson junction for Bose-Einstein condensates

    Full text link
    We report on the realization of a double-well potential for Rubidium-87 Bose-Einstein condensates. The experimental setup allows the investigation of two different dynamical phenomena known for this system - Josephson oscillations and self-trapping. We give a detailed discussion of the experimental setup and the methods used for calibrating the relevant parameters. We compare our experimental findings with the predictions of an extended two-mode model and find quantitative agreement

    Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-ÎČ signaling pathways

    Get PDF
    Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-ÎČ in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-ÎČ signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-ÎČ signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-ÎČ signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-ÎČ signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -ÎČ signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-ÎČ signaling through the MAPK pathways

    Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    Get PDF
    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.Comment: 18 pages, 11 figure

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States

    Get PDF
    The length of the published glycoprotein (G) gene sequences of avian metapneumovirus subtype-C (aMPV-C) isolated from domestic turkeys and wild birds in the United States (1996–2003) remains controversial. To explore the G gene size variation in aMPV-C by the year of isolation and cell culture passage levels, we examined 21 turkey isolates of aMPV-C at different cell culture passages. The early domestic turkey isolates of aMPV-C (aMPV/CO/1996, aMPV/MN/1a-b, and 2a-b/97) had a G gene of 1,798 nucleotides (nt) that coded for a predicted protein of 585 amino acids (aa) and showed >97% nt similarity with that of aMPV-C isolated from Canada geese. This large G gene got truncated upon serial passages in Vero cell cultures by deletion of 1,015 nt near the end of the open reading frame. The recent domestic turkey isolates of aMPV-C lacked the large G gene but instead had a small G gene of 783 nt, irrespective of cell culture passage levels. In some cultures, both large and small genes were detected, indicating the existence of a mixed population of the virus. Apparently, serial passage of aMPV-C in cell cultures and natural passage in turkeys in the field led to truncation of the G gene, which may be a mechanism of virus evolution for survival in a new host or environment

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas

    Get PDF
    The purpose of radiation therapy for unresectable biliary tract cancer is to prolong survival or prolong stent patency, and to provide palliation of pain. For unresectable bile duct cancer, there are a number of studies showing that radiation therapy is superior to the best supportive care. Although radiation therapy is used in many institutions, no large randomized controlled trials (RCTs) have been performed to date and the evidence level supporting the superiority of this treatment is low. Because long-term relief of jaundice is difficult without using biliary stenting, a combination of radiation therapy and stent placement is commonly used. As radiation therapy, external-beam radiation therapy is usually performed, but combined use of intraluminal brachytherapy with external beam radiation therapy is more useful for making the treatment more effective. There are many reports demonstrating improved response rates as well as extended survival and time to recurrence achieved by this combination therapy. Despite the low level of the evidence, this combination therapy is performed at many institutions. It is expected that multiinstitutional RCTs will be carried out. Unresectable gallbladder cancer with a large focus is usually extensive, and normal organs with high radio sensitivity exist contiguously with it. Therefore, only limited anticancer effects are to be expected from external beam radiation therapy for this type of cancer. The number of reports on ampullary cancer is small and the role of radiation therapy in this cancer has not been established. Combination treatment for ampullary cancer consists of either a single use of intraoperative radiation therapy, postoperative external beam radiation therapy or intraluminal brachytherapy, or a combination of two or three of these therapies. Intraoperative radiation therapy is superior in that it enables precise irradiation to the target site, thereby protecting adjacent highly radiosensitive normal tissues from irradiation. There are reports showing extended survival, although not significant, in groups undergoing intraoperative or postoperative radiation therapy compared with groups without radiation therapy. To date, there are no reports of large RCTs focusing on the significance of radiation therapy as a postoperative adjuvant treatment, so its usefulness as a postoperative adjuvant treatment is not proven. An alternative treatment is photodynamic therapy. There is an RCT demonstrating that, in unresectable bile duct cancer, extended survival and improved quality of life (QOL) have been achieved through a combination of photodynamic therapy and biliary stenting, compared with biliary stenting alone. Results from large RCTs are desired
    • 

    corecore