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Abstract: Noise in mass spectrometry can interfere with identifi cation of the biochemical substances in the sample. For 
example, the electric motors and circuits inside the mass spectrometer or in nearby equipment generate random noise that 
may distort the true shape of mass spectra. This paper presents a stochastic signal processing approach to analyzing noise 
from electrical noise sources (i.e., noise from instrumentation) in MALDI TOF mass spectrometry. Noise from instrumen-
tation was hypothesized to be a mixture of thermal noise, 1/f noise, and electric or magnetic interference in the instrument. 
Parametric power spectral density estimation was conducted to derive the power distribution of noise from instrumentation 
with respect to frequencies. As expected, the experimental results show that noise from instrumentation contains 1/f noise 
and prominent periodic components in addition to thermal noise. These periodic components imply that the mass spectrom-
eters used in this study may not be completely shielded from the internal or external electrical noise sources. However, 
according to a simulation study of human plasma mass spectra, noise from instrumentation does not seem to affect mass 
spectra signifi cantly. In conclusion, analysis of noise from instrumentation using stochastic signal processing here provides 
an intuitive perspective on how to quantify noise in mass spectrometry through spectral modeling.

Keywords: Mass; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Noise; Artifacts; Fourier Analysis; 
Signal Processing, Computer-Assisted; Computer Simulation; Models, Computer.

Introduction
In recent years, matrix-assisted laser desorption/ionization time-of-fl ight mass spectrometry (MALDI 
TOF MS) and its variants (e.g. surface-enhanced laser desorption/ionization time-of-fl ight MS) analyzed 
with computational pattern recognition algorithms have attracted attention as tools for early diagnosis 
of cancer. The key role of MALDI TOF or SELDI TOF MS for early cancer diagnosis is to identify 
differences due to pathological changes between the mass spectra of diseased samples and those of 
controls so that pattern recognition algorithms can learn statistically dissimilar patterns. However, 
because most such pattern differences in mass spectra of samples such as plasma/serum are very subtle, 
noise can cause false positives or false negatives in peak detection by distorting the true shape of the 
mass spectrum. Thus, several studies have investigated methods for characterizing or reducing noise 
in order to improve the sensitivity of MS (Coombes et al. 2005; Baggerly et al. 2003; Lee et al. 2003; 
Liu et al. 2003; Satten et al. 2004; Wagner et al. 2003; Zhu et al. 2003b; Malyarenko et al. 2005; Keller 
and Li, 2000; Krutchinsky and Chait, 2002; Shin et al. 2004; Anderle et al. 2004; Coombes et al. 
2003; Neville et al. 2003; Wang et al. 2003; Zhu et al. 2003a; Qu et al. 2003; Andreev et al. 2003; 
Statheropoulos et al. 1999; Hastings et al. 2002).

To date, most efforts for noise reduction, particularly in MALDI TOF MS, have focused on eliminating 
the baseline and reducing high frequency noise (Coombes et al. 2005; Baggerly et al. 2003; Lee et al. 
2003; Liu et al. 2003; Satten et al. 2004; Wagner et al. 2003; Zhu et al. 2003b; Malyarenko et al. 2005; 
Statheropoulos et al. 1999; Hastings et al. 2002). The baseline is a monotonically decreasing bias in the 
mass spectrum that originates from matrix clusters formed during the ionizing process. To eliminate this 
baseline, it is heuristically estimated (Baggerly et al. 2003; Coombes et al. 2003; Liu et al. 2003; Neville 
et al. 2003; Wagner et al. 2003) and then subtracted from the original mass spectrum. For the baseline 
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estimate, a local average or minimum intensity 
within a moving window (Baggerly et al. 2003), 
the piecewise linear regression line (Wagner et al. 
2003; Neville et al. 2003), or the convex hull of the 
intensities (Liu et al. 2003) have often been used. 
On the other hand, high frequency noise appears in 
the mass spectrum as fast varying ripples or irreg-
ular peaks at certain m/z points. A number of factors 
such as electrical interference, random ion motions, 
statistical fl uctuation in the detector gain, or chem-
ical impurities may be involved with the occurrence 
of the high frequency noise. Heuristic approaches 
have been predominantly used to reduce high 
frequency noise. For example, moving averaging 
fi lters (Liu et al. 2003), Gaussian kernel fi lters 
(Wang et al. 2003; Zhu et al. 2003b), principal 
component analysis (PCA) (Statheropoulos et al. 
1999) and the wavelet transform (WT) (Coombes 
et al. 2005; Zhu et al. 2003a; Qu et al. 2003) are the 
common techniques for high frequency noise reduc-
tion. Andreev et al. obtained power spectral density 
estimates of the high frequency noise through non-
parametric power spectral density estimation and 
designed a matched fi lter to reduce the noise adap-
tively (Andreev et al. 2003). Most manufacturers 
also provide noise reduction algorithms such as a 
moving average fi lter in their products; however, it 
is diffi cult to obtain optimal fi ltering results because 
the users must determine the filter parameters 
iteratively through experimentation or based on 
previous experience.

The noise reduction approaches introduced 
above have been established based on empirical 
insight rather than on rigorous statistical noise 
analysis; therefore, the parameters of these algo-
rithms have been determined in an ad hoc manner. 
Few studies have investigated the noise sources in 
MS and attempted to model the noise by measuring 
its statistical characteristics. Anderle et al 
attempted to represent the noise magnitude vari-
ance in liquid chromatographic MS (LC MS) as a 
combination of quadratic and linear models 
(Anderle et al. 2004). Similarly, Hastings et al 
fi tted the log transformed noise level to a sum of 
two normal distributions, and compared the perfor-
mance of the average and median fi lters based on 
their noise model (Hastings et al. 2002). However, 
since these studies have been done mainly using 
statistical error analysis rather than stochastic 
signal processing, they cannot provide suffi cient 
perspective on how noise varies with time and 
frequency. Malyarenko et al. developed a numer-

ical baseline model using the phenomenon of 
exponentially decaying charge accumulation on 
the ion detector (Malyarenko et al. 2005). Shin et 
al. also proposed a noise model for MALDI TOF 
MS, where we categorized noise into three types: 
noise from instrumentation, noise from random 
ion motions and statistical fl uctuations in the ion 
detector, and chemical noise. Then, we hypothe-
sized that the observed noise is a result of multi-
plication and addition of these hidden components. 
Additionally, we reported the results of non-para-
metric power spectral density analysis on noise 
from instrumentation (Shin et al. 2004). Similar 
efforts to reduce chemical noise were also made 
by some manufacturers. For example, Applied 
Biosystems Inc. developed an algorithm based on 
the Fourier transform and notch fi ltering to mini-
mize the effect of chemical impurities on mass 
spectra (Baranov, 2001). They tried to identify 
periodic patterns of chemical noise in mass spectra 
using the Fourier transform, and to reduce signal 
deterioration by eliminating these periodic patterns 
using a notch fi lter. However, their approach does 
not seem to be strictly model-based in the sense 
that they did not build a model for chemical noise 
from thefrequency representation. 

These model-based studies represent an 
important advance over heuristic approaches. The 
lack of knowledge on statistical characteristics 
of the signal and noise in heuristic approaches 
may lead to the design of noise reduction algo-
rithms or digital fi lters that deteriorate the true 
signal rather than restore it. However, more work 
needs to be done towards complete noise char-
acterization. Prior studies may have oversimplifi ed 
the noise sources or disregarded the importance 
of power spectral density analysis. For example, 
most noise analyses have not explicitly distin-
guished the subtypes of the high frequency noise; 
however, various electrical, physical, and chem-
ical components of the mass spectrometer may 
generate subtypes of noise with different char-
acteristics. Therefore, in order to elucidate the 
stochastic characteristics of noise in mass spec-
trometry, such individual noise components must 
be carefully separated and analyzed. In addition 
to noise subtype isolation and measurement, 
power spectral density estimation is also critical 
in noise characterization because this method can 
provide guidance for digital filter design by 
showing the power distribution of noise over 
frequencies, which determines the magnitude and 
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period of signal fl uctuation due to noise in the 
mass spectrum. 

As part of our effort for modeling noise in 
MALDI TOF mass spectrometry, we describe a 
method in which we have isolated noise from 
instrumentation occurring in the MALDI TOF 
mass spectrometer and obtained the signal model 
for this type of noise using parametric power 
spectral density estimation. By “noise from instru-
mentation”, we mean the interference caused by 
electrical sources inside or near the mass spectrom-
eter including thermal noise from the transimped-
ance amplifi er, power supply and power line noise, 
and electrical interference from the ion accelerator 
pulse. In following sections, we introduce the 
fundamental theory of random signal modeling 
based on parametric power spectral density estima-
tion and our approaches to investigating the spec-
tral characteristics of noise from instrumentation 
in MALDI TOF mass spectrometry.

Fundamental Theory
In general, a random process does not show regular 
patterns in the time domain like a sine wave 
because many signals of different frequencies and 
phases are added together. The power spectral 
density of a random process provides the power 
distribution of the signal with respect to frequencies. 
If there is a high value at a certain frequency in a 
power spectral density, the corresponding random 
process has a strong sine wave with that frequency 
in the time domain (Proakis and Manolakis, 2000). 
The simplest way of estimating the power spectral 
density of a random process is to calculate the 
absolute square of the Fourier transform of a given 
realization, which is referred to as the periodogram. 
Power spectral density estimation methods based 
on the periodogram are called nonparametric 
methods because these methods derive a power 
spectral density estimate from given realizations 
without any background information on the data 
source. However, nonparametric methods suffer 
from poor frequency resolution and spectral 
leakage effects due to the fi nite length of data. The 
lack of resolution in nonparametric estimation 
becomes more problematic when the sampling 
frequency is very high but the data length is 
relatively short. In this case, a non-parametric 
power spectral density estimate would provide 
power information on only a relatively small 
number of frequencies within a wide range of 

frequencies (Proakis and Manolakis, 2000). 
Spectral leakage causes ripples in a power spectral 
density estimate, which makes it difficult to 
identify true periodic components in the signal. 

Parametric power spectral density analysis can 
overcome these drawbacks by estimating the 
parameters of a linear system under the assumption 
that the observed random signal is the output of 
the linear model when a random signal with a white 
frequency spectrum is given as input. Once a model 
is established, a high-resolution power spectral 
density estimate free from spectral leakage can be 
obtained since the power spectral density of the 
random signal is determined by the parameters of 
the linear system (Proakis and Manolakis, 2000). 
Table 1 briefl y summarizes the advantages and 
disadvantages of non-parametric and parametric 
power spectral density estimation.

In parametric power spectral density estimation, 
the difference equation between the input random 
signal and the observed signal in the time domain 
can be written as:

 

In the above equation, x(n) denotes the observed 
signal system at the nth time index, and w(n), the 
input random signal at the same time index. H(f), 
the Fourier representation of the linear system, is 
defi ned as the ratio of X(f ) and W(f ), the Fourier 
representations of x(n) and w(n) and it is uniquely 
determined by a1, …, ap and b1, …, bq . The power 
spectral density of the random signal SX(f ) is 
obtained using the following equation:

where Sw(f ) is the power spectral density of the 
input signal with a white spectrum (Proakis and 
Manolakis, 2000). 

Three different types of random processes can 
be generated using the linear model. When 
b1, …, bq = 0, the process produced by the linear 
model is called an autoregressive (AR) process of 
order P. When a1, …, ap = 0, the resulting process 
is called a moving average (MA) process of order 
q. Otherwise, the process is called an autoregres-
sive-moving average (ARMA) process of order p 
and q. Generally, these three models could be 
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exchanged if models of infi nite order be allowed. 
However, among these three types, the AR model 
is most commonly used for power spectral density 
estimation because it can show narrow frequency 
components more accurately than the others with 
simple linear equations for parameter estimation 
(Proakis and Manolakis, 2000). 

The Burg algorithm estimates the power spectral 
density using an AR model. The AR parameters 
are estimated by minimizing the forward and back-
ward residuals of the model, which are defi ned as 
the error between the given random signal and their 
corresponding estimators at n and n – p (Proakis 
and Manolakis, 2000). In general, power spectral 
density estimates obtained by the Burg algorithm 
have high frequency resolution (Proakis and 
Manolakis, 2000), and are more unbiased and 
stable than other power spectral density estimation 
algorithms using an AR model such as the Yule-
Walker algorithm and least square estimator 
(de Waele and Broersen, 2000). 

Ideally, an infi nite measurement of a random 
process is desired to develop a most accurate 
model; however, in reality, measurements have 
finite length due to practical limitations of 
instrumentation. For example, in MALDI TOF 
mass spectrometry, the maximum signal length 
is determined by the instrument according to a 
pre-defi ned limit on the maximum mass to charge 
ratio. In recognition of this common problem, de 
Waele and Broersen extended the Burg algorithm 
to obtain a more accurate model using multiple 
segments from a random process than can be 
achieved using a single realization of the process 
(de Waele and Broersen, 2000). Like the Burg 
algorithm, this algorithm also estimates the model 
parameters by minimizing the forward and 
backward residuals; however, the revised 
algorithm attempts to minimize residuals from 

multiple segments simultaneously (de Waele and 
Broersen, 2000). This extended Burg algorithm 
generates a more accurate model than parameter 
averaging methods, which develop a fi nal model 
by averaging the parameters of the models derived 
from individual segments (de Waele and 
Broersen, 2000).

The model order must be carefully determined 
so that the model can represent the given segments 
well, while avoiding overfi tting. In general, the 
residuals decrease as the model order increases, so 
the modeling process must be stopped at some 
point even though the residuals are still decreasing. 
In the Burg algorithm, the Akaike’s information 
criterion (AIC) is employed to select the optimum 
model order (de Waele and Broersen, 2000). The 
AIC is represented as the sum of the model order 
and the log residual of the model with respect to 
the given random process. The parameter estimation 
of the Burg algorithm stops when the AIC is 
minimized. When errors between the estimated 
model and true random process is normally 
distributed, the AIC is defi ned as the following 
equation 

 AIC p RES p
p

N
( )= ( )( )+ln

2   

where RES(p) is the residual variance of the model 
of order p, and N is the length of a given signal 
realization (de Waele and Broersen, 2000; Akaike, 
1974). In the Burg algorithm for multiple 
segments, the above defi nition of AIC is slightly 
modifi ed so that it may refl ect the fact that the 
variance of the estimated parameters becomes 
lower than when a single segment is used by a 
factor of S, which is the number of segments 
(de Waele and Broersen, 2000).

Table 1. The comparison of non-parametric and parametric power spectral density estimation. Under the situa-
tion that only realizations of noise from instrumentation with a fi nite length are available, parametric power 
spectral density estimation has more advantages over non-parametric estimation while longer computation time 
is needed.

Method Advantage Disadvantage
Non-parametric Simple Poor frequency resolution
 Easy to use Spectral leakage
Parametric Unlimited frequency Relatively complex modeling
 resolution process
 No spectral leakage 
 Easy to use for simulation 

(3)



223

Instrumentation in MALDI  TOF mass spectrometry

Cancer Informatics 2007:3

 AIC p RES p
p
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2  (4)

In this study, additional steps were taken to avoid 
overfi tting. The Burg algorithm is prone to overfi t-
ting because it uses the same data to select the 
model order as are used to develop the model. 
Thus, in this study a portion of the data set was 
held out from the model development and used to 
select the fi nal model. In this process, the fi nal 
model was selected based on another metric, the 
Kullback-Leibler discrepancy (KLD). The KLD is 
a generalized error measure for two probabilistic 
distributions, p(x) and q(x) (Kullback, 1959). 

 D p q p x
p x

q x
|| log( )= ( )
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( )∫

x

 

In this case, p(x) represents the probabilistic distri-
bution estimate of the model from the Burg algo-
rithm, and q(x) the probabilistic distribution of the 
held-out set. In fact, the AIC is an estimate of the 
KLD that is specialized for measuring the distance 
between a set of realizations of a random process 
and a model developed based on them (Burnham 
and Anderson, 2004; De Waele, 2003). However, 
in general, the AIC may not be appropriate for 
estimating the distance from a model to another 
independent set (De Waele, 2003); thus, the KLD 
was adopted for selecting the fi nal model using the 
held-out set. 

Materials and Methods
MALDI TOF mass spectra were measured from a 
blank plate to obtain noise from instrumentation. 
This type of noise is generated by electric circuits 
(e.g. the transimpedance amplifi er, power supply 
and power line, and the ion accelerator pulse) in 
the instrument and electric/magnetic interferences 
from nearby equipment. Since no actual ion particle 
detection is performed in the experiments, noise 
from instrumentation does not include the noise 
caused by the ion detector. Since the gold coating 
of the plate can cause chemical noise if the laser 
hits it, we ensured that the laser was not directly 
illuminating the plate by installing a physical barrier 
between them. A total of six data sets were created 
using three MALDI TOF machines of two types to 
investigate how the power spectral density of noise 

from instrumentation varies with machine type, 
location, and time. Table 2 summarizes the data 
sets that were used in our study. Data were collected 
on October 7th, 2005 and October 17th, 2005 using 
two Voyager Biospectrometry instruments (Applied 
Biosystems, Framingham, MA, USA) located in 
two separate proteomics core facilities of the 
University of Texas at Austin (UT Austin). The 
acceleration voltage of the mass analyzer was set 
to 28,125 V. Each spectrum was the average of 256 
individual scans and had 262,144 data points with 
a bin size of 10 ns (sampling rate). Each UT data 
set consisted of 20 mass spectra. Averaging multiple 
scans to obtain a mass spectrum has been tradition-
ally accepted to reduce the randomness that may 
occur in data acquisition, which can be considered 
as an elementary noise reduction scheme. There-
fore, we also investigated the potential effects of 
noise from instrumentation on mass spectra by 
deriving an AR model based on the average of 
individual scans. It should be noted that the average 
of individual scans is still a random process, so 
certain statistics like the PSD can be derived from 
it. Data were also collected on November 4th, 2005 
and November 21st, 2005 using a third machine, a 
Voyager STR MALDI TOF instrument (Applied 
Biosystems, Framingham, MA, USA), located at 
the Moffi tt Cancer Center (MCC). The acceleration 
voltage of the mass analyzer was set to 25,000 V. 
Each mass spectrum was the average of 250 scans 
and had 233,889 data points with a bin size of 10 ns. 
Each MCC data set consisted of 20 mass spectra. 
In each data set, 10 mass spectra were randomly 
selected and held out as a validation group to deter-
mine the optimal model order and the remaining 
10 mass spectra were used to develop a linear model 
for noise from instrumentation. Some summary 
statistics of the MALDI TOF mass spectra are 
presented in Table 3. The mean DC offset was 
estimated by taking the mean of the means of indi-
vidual mass spectra belonging to the same set 
(Equation (6)). Similary, the mean root-mean-
square (RMS) amplitude was calculated after 
centering each mass spectrum at zero (i.e. 
subtracting the mean from each mass spectrum) 
using Equation (7). In Equation (6) and (7), xm(n) 
represents the nth point of the mth realization of 
noise from instrumentation.

 x
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The Burg algorithm for multiple segments was 
applied to the training portion of each of the six 
data sets to obtain an AR model for noise from 
instrumentation for each of the machines. Because 
the DC offset of mass spectra introduces bias in 
the model parameters, the DC offset must be esti-
mated and subtracted (de Waele and Broersen, 
2000). In our study, the means of individual mass 
spectra were used as the estimate of the DC offset. 
The Burg algorithm for segments was implemented 
by de Waele and Broersen (de Waele and Broersen, 
2000) using MATLAB® (TheMathworks, Natick, 
MA, USA), and their toolbox is publicly available 

(http://www.mathworks.com). This MATLAB® 
implementation allows the user to limit the 
maximum model order to control the complexity 
of the model. The Burg algorithm for segments 
was used to develop a model on the training portion 
of the data. The algorithm uses AIC to select the 
optimal model order, on the training data, up to the 
specifi ed maximum model order. The entire process 
was repeated several times with the maximal model 
order parameter varying from 100 to 10,000. The 
fi nal model was selected from among this set of 
possible models using the validation set. The 
average KLD between each model and the held-out 
mass spectra was calculated and the model with 
the smallest average KLD was selected as the 
optimal model for the data set.

Once the fi nal models for the data sets were 
determined, the power spectral densities of the 
models were obtained using a Fourier transform 
from the model parameters. A sharp peak of the 
power spectral density at a certain frequency means 
that a strong sine wave with the frequency exists 
in the noise. However, in order to fully understand 
how noise from instrumentation affects mass 
spectra, a true signal without noise (e.g. mass 
spectrum free from noise) would also be needed. 
Since this cannot be obtained in general, a simula-
tion was performed in our study in order to reveal 
the effect of only noise from instrumentation on 
MALDI TOF mass spectra

The potential effect of noise from instrumenta-
tion was investigated by adding simulated noise to 
simulated noise-free MALDI TOF mass spectra. 
Noise from instrumentation was simulated based 
on data generation methods proposed by Broersen 
and de Waele (Broersen and de Waele, 2003), 
which can generate a random process given an AR 

Table 3. The average DC offset and average RMS 
magnitude of mass spectra in each data set in relative 
intensity. As can be seen in this table, these statistics 
are consistent over time, but vary across the instru-
ments. The potential effect of noise from instrumenta-
tion was investigated by adding simulated noise to 
simulated noise-free MALDI TOF mass spectra. These 
DC offsets and RMS magnitudes are needed in gen-
erating simulation noise using the models obtained from 
our parametric power spectral density analysis.

Data set Average DC offset Average RMS 
  magnitude
SetA_UT1 255.0 6.9
SetB_UT1 281.4 6,8
SetA_UT2 844.5 11.9
SetB_UT2 905.9 11.2
SetA_MCC 1425.4 6.8
SetB_MCC 1523.5 5.4

(7)

Table 2. The data sets of noise from instrumentation. The data sets were measured to investigate how the 
power spectral densities of noise from instrumentation varied with instrument type, time and location.

Data set Location Date Number of MS
SetA_UT1 UT Austin, 10/07/2005 20
 Mass Spectrometry and
SetB_UT1 Proteomics Facility 10/17/2005 20
SetA_UT2 UT Austin, 10/07/2005 20
 Institute of Cell & Molecular
SetB_UT2 Biology Core Facility 10/17/2005 20
SetA_MCC  11/04/2005 20
 H. Lee Moffi tt Cancer Center
SetB_MCC  11/21/2005 20



225

Instrumentation in MALDI  TOF mass spectrometry

Cancer Informatics 2007:3

model obtained from the Burg algorithm. Because 
the noise generator produces a standard stationary 
random signal with zero-mean and unit-standard 
deviation, the simulated noise was compensated 
to have the mean and standard deviation estimated 
from real mass spectra of noise from instrumenta-
tion. Noise-free MALDI TOF mass spectra were 
simulated using the MALDI TOF simulation model 
developed by Coombes et al. (Coombes et al. 
2004), which we translated from S-PLUS® to 
MATLAB®. Coombes et al’s MALDI TOF model 
includes several key aspects of the MALDI TOF 
process such as peak broadening due to the distri-
bution of isotopes and initial ion velocities. Gener-
ally, 100s–1,000s molecules are ionized per laser 
shot with initial velocities whose mean and stan-
dard deviation are 350 m/s and 50 m/s respectively 
during the MALDI TOF process (Beavis and B.T., 
1991, Juhasz et al. 1997). In our simulation, it was 
assumed that 1,000 molecules (≈1.7 × 10–21 moles) 
are ionized in each laser shot. Microchannel plate 
(MCP) detectors, commonly used in MALDI TOF, 
amplify the signal for detected ions by a factor of 
102–104 (Koppenaal et al. 2005). Generally, TOF 
mass spectrometers employ the chevron MCP as 
a detector, which provides a gain of about 106–107 
per ion collision (Ladislas Wiza, 1979). Since the 
specifi cations of the transimpedance amplifi er after 
the detector is not publicly available, our simula-
tion assumes a total gain of 107 in ion detection 
and that the MCP generates no additional noise 
(e.g. shot noise in the detector). A total of 57 
proteins contained in human plasma were simu-
lated. The number of proteins molecules ionized 
by the MALDI process was calculated based on 
the relative concentration ratios of these proteins 
in human plasma (Anderson and Anderson, 2002). 
Each simulated mass spectrum was assumed to be 
externally calibrated using six calibrants (m/z = 
175.2, 1060, 5734, 12360.5, 16951.5, 66430: argi-
nine, bradykinin, bovine insulin, cytochrome C, 
myoglobin, bovine serum albumin) using the least 
square error method.

Results
In a plot of the power spectral density, the x-axis 
represents the frequency (linear scale) and the 
y-axis represents the normalized power of each 
periodic component in noise (logarithmic scale). 
In general, a mass spectrum shows the relative 
abundances of protein/peptide species given in a 

sample, which are actually the digitized values of 
the output voltage from the transimpedance ampli-
fi er connected to the ion detector; however, since 
the unit of those values is not clearly provided by 
the manufacturer, the unit of power spectral density 
was not specifi ed in this paper. The power spectral 
density was normalized with respect to the power 
gain between the input, in this case a white 
Gaussian random signal with an unit variance, and 
the output of the linear signal model established 
by the Burg algorithm for segments. The power 
spectral densities for spectra collected on the same 
machine on different days are similar (e.g. compare 
Fig. 1 A and B). Thus, the power spectral density 
of noise from instrumentation remains stable over 
the time scale of this study, which shows that noise 
from instrumentation can be modeled as a 
stationary random process.

Below 10 kHz, it was observed that the noise 
power at 0 Hz is non-zero and monotonically 
decreases until about 5 kHz in all of the power spec-
tral density estimates (Fig. 2). In the higher frequency 
region, many peaks are observed in the power spec-
tral densities of the data from UT, which indicates 
that mass spectra from those instruments may be 
affected by electric or magnetic interferences in 
addition to thermal noise (Fig. 1 A and C). Harmonics 
that begin at 3.125 MHz and continue at an interval 
of 6.25 MHz until 40.625 MHz are present in the 
power spectral densities of the UT instruments, 
which are identical models located in separate 
facilities. The MALDI TOF instruments of the same 
model (UT1 and UT2) showed very similar power 
spectral densities except for the peaks from 5–10 
MHz, which are believed to be environmental inter-
ferences peculiar to the UT1 instrument. The power 
spectral densities of different models of MALDI 
TOF instruments were also obtained and compared 
(Fig. 1 D). Unlike the power spectral densities of 
the UT instruments, the power spectral densities of 
the spectra from the MCC machine do not have 
regular patterns like harmonics. Moreover, fewer 
periodic components were observed in the MCC 
power spectral density than in those of the instru-
ments at UT Austin (compare Fig. 1 A and D).

The power spectral density of noise is 
extremely useful when designing digital fi lters 
because the power spectral density informs which 
periodic components are dominant in signal 
deterioration, and thus should be removed. 
However, it is diffi cult to determine how noise 
from instrumentation affects mass spectra by 
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looking at only its power spectral density. Thus, 
the impact of noise from instrumentation was 
investigated by adding noise simulated based on 
the noise model to simulated noise-free MALDI 
TOF mass spectra. Figure 3 A and B present the 
full view of the simulated mass spectrum without 
any types of noise and the one corrupted by noise 
from instrumentation simulated based on the 
SetA_UT1 power spectral density estimates. 
These noise-free and noisy mass spectra look 
almost identical at glance. Figure 3 C and D 
shows the zoomed-in views of peaks at 8,800 and 
35,000 m/z, respectively, to further investigate 
the effects of noise from instrumentation. As 
these fi gures demonstrate, no signifi cant differ-
ences are visually apparent between the noise-
free and noisy mass spectra. From the simulation 
results, we note that noise from instrumentation 
does not appear to make a signifi cant impact on 
the quality of MALDI TOF mass spectra.

Discussion and Conclusion
The power spectral density reveals how the power 
of the periodic components hidden in the noise is 
distributed with respect to frequencies given a 
random process, and thus helps in developing 
fi ltering strategies for noise reduction. In our study, 
noise from instrumentation was separated from 
other types noise in MALDI TOF MS, and its 
power spectral density was estimated using the 
Burg algorithm for multiple segments, which 
develops an AR model for the noise by minimizing 
the residuals between the model and multiple 
observed noise segments simultaneously. The Burg 
method for segments provides much less biased 
models than other methods such as parameter 
averaging methods when multiple signal segments 
from the same source are available for parameter 
estimation (de Waele and Broersen, 2000). Thus, 
this algorithm is well suited for the purpose of 
estimating the power spectral density of a random 

Figure 1. Power spectral densities of the AR models obtained from (A) SetA_UT1, (B) SetB_UT1, (C) SetA_UT2, and (D) SetA_MCC. When 
comparing (A) and (B), the frequency characteristics of noise from instrumentation in the same MALDI TOF instrument do not vary over 
dates of collection. Two MALDI TOF instrument of the older model type (Voyager Biospectrometry) show similar power spectral densities 
((B) and (C)) containing prominent harmonics and more periodic components. In comparison, the instrument of the newer model type 
(Voyager STR) shows no noticeable harmonics and fewer periodic components in its power spectral density (D). 
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process with a fi nite length, but multiple realiza-
tions available like noise from instrumentation.

Interesting features of noise from instrumenta-
tion were observed in our studies. Since the DC 
offsets of the mass spectra were already removed 
individually before applying the Burg algorithm 
for segments, there should not be a peak at 0 Hz; 
however, as can be seen in Figure 2, our power 
spectral density estimate is not zero at 0 Hz. This 
power component at 0 Hz may have been caused 
by the bias between the estimated DC offset of 
mass spectra and the true value. The bias cannot 
be completely removed since only a fi nite number 
of noise realizations are available, affecting the 
model parameters that determine the DC power 
component in the power spectral density (de Waele 
and Broersen, 2000). Nonetheless, these high 
values near 0 Hz may not be completely explained 
by the bias in the model parameters. One possible 

hypothesis is that this noise component may 
originate from 1/f noise of the MALDI TOF instru-
ment (Fig. 2). This type of noise is also called “pink 
noise” or “fl icker noise” and is known to be mainly 
due to a fl uctuation of the mobility of the free 
charge carriers in an electronic device, and it is 
characterized by the inverse relationship between 
the frequency and the power spectrum (Ott, 1988). 
1/f noise has a far narrower bandwidth than other 
types of noise such as white noise, mainly affecting 
low frequency signals. Therefore, we suspect that 
1/f noise also contributes to the non-zero values 
near 0 Hz in the power spectral density.

To see the variation of the power spectral 
density with the instrument type, location, and 
date of collection, six data sets of noise from 
instrumentation were measured from three 
different MALDI TOF instruments. The power 
spectral density does not vary much over the time 

Figure 2. The zoomed-in power spectral density of SetA_UT1 (0–5,000 Hz). The power spectral density clearly shows 1/f noise in the low 
frequency region. The DC offset is not zero even though the means of the individual mass spectra of noise from instrumentation were 
removed before the Burg algorithm for segments was applied. The DC offset may be explained by the bias between the true mean and the 
mean estimates of the mass spectra and the effect of 1/f noise near 0 Hz. 
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scale studied, but it varies with the instrument type 
and location. This observation is also consistent 
with our assumption that noise from instrumenta-
tion is a stationary random process, which is a 
critical requirement for applying power spectral 
density analysis. The power spectral density of a 
stationary random process is consistent across 
realizations of the process over time because the 
statistical characteristics (i.e. the ensemble mean 
and autocorrelation) of a stationary random 
process are time-invariant.

The comparison of the power spectral densities 
from two identical instruments located in the 
different facilities suggests that both internal and 
external electric or magnetic interference sources 
affect the mass spectra. More specifi cally, the fact 
that the same harmonics are observed in both 
devices at UT implies that the source of this 

interference is within the mass spectrometer 
(compare Fig. 1 A and C). On the other hand, there 
are non-harmonic periodic components present in 
the power spectral density for one of the UT instru-
ments but not the other (compare Fig. 1 A and C). 
The absence of these periodic components in the 
UT2 power spectral density suggests that external 
sources generating electric or magnetic interference 
ranging from 5 MHz to 10 MHz may exist near the 
UT1 MALDI TOF instrument, but not near UT2 
since these instruments are the same machine type, 
but located in different facilities. Therefore, 
shielding should be carefully considered to avoid 
signal deterioration due to the interference from 
nearby equipment. In principle, this hypothesis 
could be tested by systematically turning off all other 
instruments in the facility and re-analyzing the mass 
spectra of noise from instrumentation. However, it 

Figure 3. Simulated human plasma mass spectra. It is assumed that about 1,000 molecules are ionized every laser illumination, and the 
gain of the ion detector is 107. (A) The entire view of the mass spectrum without noise from instrumentation. (B) The entire view of the mass 
spectrum with noise from instrumentation. (C) A zoomed view of a MALDI mass spectrum showing a peak near m/z 8.8 kDa. (D) A zoomed 
view of mass spectrum near 35 kDa. In (C), and (D), the black solid lines represent mass spectra with noise, and the red dashed lines mass 
spectra without noise. In (D), the peak with noise from instrumentation is not clearly distinguished from that without noise from instrumenta-
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is not practical to turn off all nearby equipment 
because the MALDI TOF instruments are located 
in the proteomics core facilities, where many other 
research experiments are run simultaneously. 

The power spectral density and model order 
optimization analyses imply that the newer MALDI 
TOF instrument (Voyager STR, Applied Biosys-
tems, Framingham, MA, U.S.A.) at MCC may 
employ more effective noise shielding schemes 
than the earlier model. That is, fewer periodic 
components are seen in the power spectral densities 
of the newer instrument than in those of the older 
ones. This is probably a consequence of more 
advanced instrumentation design of the newer 
model that provides better shielding to the internal 
or external interference. The average KLD of AR 
models with respect to the validation mass spectra 
provides additional evidence (Fig. 4). For SetA_
UT1, the average KLD decreases as the model 
order is increased up to about 9,000 and then 
plateaus; thus, the optimal model order is the 
maximum order of 9,000. Similarly, the optimal 
AR model order for SetA_UT2 is approximately 
8,500. However, the KLD of the model for SetA_
MCC plateaus at about 4,500, which suggests that 
the power spectral density of SetA_MCC may 
contain fewer periodic components than those of 
SetA_UT1 and SetA_UT2 since each term in the 
AR model represents a periodic component with 
a specifi c frequency.

The potential effect of noise from instrumenta-
tion was investigated through a simulation study. 
The simulation suggests that only noise from instru-
mentation may not signifi cantly impact the interpre-
tation of mass spectra. In fact, the RMS magnitude 
of noise is almost negligible in the high mass region 
when it compared to the randomness of the peak 
shapes due to ions’ random initial velocities 
(Fig. 3 D). This is consistent with the fact that the 
DC offset and root-mean-square (RMS) magnitudes 
of noise from instrumentation are relatively small, 
ranging only 250–1,500 and 6 to 11, respectively 
(Table 3), which are negligible compared to the 
height of the example peaks (≈250,000).

In conclusion, this paper presents a systemic 
methodology for modeling noise from instrumenta-
tion in MALDI TOF MS on the basis of parametric 
power spectral density estimation using multiple 
realizations. Our study opens a way of isolating a 
noise component, and measuring its stochastic 
features, which are critical in designing fi lters for 
signal manipulation often needed for MS applica-
tions like biomarker identifi cation. In addition, this 
methodology will also benefi t system designers of 
mass spectrometers as well by providing reliable 
spectral information on noise, letting them developing 
better shielding strategies for potential signal 
interference. For example, in our study, the power 
spectral densities of the mass spectrometers of the 
earlier model indicate that more shielding should be 
considered to avoid the periodic interference for a 
higher signal quality although the overall impact of 
noise from instrumentation was assessed to be low 
according to our simulation study. In future studies, 
similar approaches could be applied to other types 
of noise in MALDI TOF MS such as chemical noise. 
Isolating individual subtypes of noise and 
performing stochastic modeling of them will 
provide an important perspective on how to suppress 
signal deterioration due to the noise effectively by 
showing the power distribution over frequencies. 
Furthermore, such noise analysis can also be 
extended to other types of instrumentation like ESI 
MS once the types of noise in the instrumentation 
are identifi ed and isolated. Hence, this technique is 
expected to benefi t noise reduction studies for other 
types of MS instrumentation as well.
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