193 research outputs found

    Regulation of the reproductive cycle and early pregnancy by relaxin family peptides

    Get PDF
    The relaxin family of peptide hormones are structurally closely related to one another sharing a heterodimeric A–B structure, like that of insulin. They may also be active as unprocessed B–C–A pro-forms. Relaxin has been shown to pay a key role within the ovary, being involved in follicle growth, and ovulation. Relaxin is produced in large amounts also by the corpus luteum where it acts as an endocrine hormone positively affecting implantation, placentation and vascularization during the all-important first trimester phase of pregnancy establishment. Relaxin exerts its functions via the receptor RXFP1. Insulin-like peptide 3 (INSL3) in contrast acts through the related receptor RXFP2, and plays an essential role in the production of androgens within growing antral follicles. INSL3 is also produced in large amounts by the male fetus shortly after sex determination, where it controls the first transabdominal phase of testicular descent. However, this fetal INSL3 is also able to influence placental and maternal physiology, indicating associations with later preeclampsia and/or fetal growth restriction. Other members of this relaxin-like family of peptides, such as INSL4, INSL5 and INSL6 are less well studied, though all suggest modulatory roles in ovarian and/or placental function

    Cationic polyamines inhibit anthrax lethal factor protease

    Get PDF
    BACKGROUND: Anthrax is a human disease that results from infection by the bacteria, Bacillus anthracis and has recently been used as a bioterrorist agent. Historically, this disease was associated with Bacillus spore exposure from wool or animal carcasses. While current vaccine approaches (targeted against the protective antigen) are effective for prophylaxis, multiple doses must be injected. Common antibiotics that block the germination process are effective but must be administered early in the infection cycle. In addition, new therapeutics are needed to specifically target the proteolytic activity of lethal factor (LF) associated with this bacterial infection. RESULTS: Using a fluorescence-based assay to identify and characterize inhibitors of anthrax lethal factor protease activity, we identified several chemically-distinct classes of inhibitory molecules including polyamines, aminoglycosides and cationic peptides. In these studies, spermine was demonstrated for the first time to inhibit anthrax LF with a K(i )value of 0.9 ± 0.09 μM (mean ± SEM; n = 3). Additional linear polyamines were also active as LF inhibitors with lower potencies. CONCLUSION: Based upon the studies reported herein, we chose linear polyamines related to spermine as potential lead optimization candidates and additional testing in cell-based models where cell penetration could be studied. During our screening process, we reproducibly demonstrated that the potencies of certain compounds, including neomycin but not neamine or spermine, were different depending upon the presence or absence of nucleic acids. Differential sensitivity to the presence/absence of nucleic acids may be an additional point to consider when comparing various classes of active compounds for lead optimization

    Design of the Physical exercise during Adjuvant Chemotherapy Effectiveness Study (PACES):A randomized controlled trial to evaluate effectiveness and cost-effectiveness of physical exercise in improving physical fitness and reducing fatigue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer chemotherapy is frequently associated with a decline in general physical condition, exercise tolerance, and muscle strength and with an increase in fatigue. While accumulating evidence suggests that physical activity and exercise interventions during chemotherapy treatment may contribute to maintaining cardiorespiratory fitness and strength, the results of studies conducted to date have not been consistent. Additional research is needed to determine the optimal intensity of exercise training programs in general and in particular the relative effectiveness of supervised, outpatient (hospital- or physical therapy practice-based) versus home-based programs.</p> <p>Methods</p> <p>This multicenter, prospective, randomized trial will evaluate the effectiveness of a low to moderate intensity, home-based, self-management physical activity program, and a high intensity, structured, supervised exercise program, in maintaining or enhancing physical fitness (cardiorespiratory fitness and muscle strength), in minimizing fatigue and in enhancing the health-related quality of life (HRQoL). Patients receiving adjuvant chemotherapy for breast or colon cancer (n = 360) are being recruited from twelve hospitals in the Netherlands, and randomly allocated to one of the two treatment groups or to a 'usual care' control group. Performance-based and self-reported outcomes are assessed at baseline, at the end of chemotherapy and at six month follow-up.</p> <p>Discussion</p> <p>This large, multicenter, randomized clinical trial will provide additional empirical evidence regarding the effectiveness of physical exercise during adjuvant chemotherapy in enhancing physical fitness, minimizing fatigue, and maintaining or enhancing patients' quality of life. If demonstrated to be effective, exercise intervention programs will be a welcome addition to the standard program of care offered to patients with cancer receiving chemotherapy.</p> <p>Trial registration</p> <p>This study is registered at the Netherlands Trial Register (NTR 2159)</p

    The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    Get PDF
    In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research

    Chromosome Duplication in <i>Saccharomyces cerevisiae</i>

    Get PDF
    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G 1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. Keywords: DNA replication; cell cycle; chromatin; chromosome duplication; genome stability; YeastBookNational Institutes of Health (U.S.) (Grant GM-052339

    Physical activity for women with breast cancer after adjuvant therapy

    Get PDF
    © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. Background: Women with a diagnosis of breast cancer may experience short- and long-term disease and treatment-related adverse physiological and psychosocial outcomes. These outcomes can negatively impact prognosis, health-related quality of life (HRQoL), and psychosocial and physical function. Physical activity may help to improve prognosis and may alleviate the adverse effects of adjuvant therapy. Objectives: To assess effects of physical activity interventions after adjuvant therapy for women with breast cancer. Search methods: We searched the Cochrane Breast Cancer Group (CBCG) Specialised Registry, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Physiotherapy Evidence Database (PEDro), SPORTDiscus, PsycINFO, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform, on 18 September 2015. We also searched OpenGrey and Healthcare Management Information Consortium databases. Selection criteria: We searched for randomised and quasi-randomised trials comparing physical activity interventions versus control (e.g. usual or standard care, no physical activity, no exercise, attention control, placebo) after adjuvant therapy (i.e. after completion of chemotherapy and/or radiation therapy, but not hormone therapy) in women with breast cancer. Data collection and analysis: Two review authors independently selected studies, assessed risk of bias, and extracted data. We contacted trial authors to ask for additional information when needed. We calculated an overall effect size with 95% confidence intervals (CIs) for each outcome and used GRADE to assess the quality of evidence for the most important outcomes. Main results: We included 63 trials that randomised 5761 women to a physical activity intervention (n = 3239) or to a control (n = 2524). The duration of interventions ranged from 4 to 24 months, with most lasting 8 or 12 weeks (37 studies). Twenty-eight studies included aerobic exercise only, 21 involved aerobic exercise and resistance training, and seven used resistance training only. Thirty studies described the comparison group as usual or standard care, no intervention, or control. One-fifth of studies reported at least 20% intervention attrition and the average physical activity adherence was approximately 77%. No data were available on effects of physical activity on breast cancer-related and all-cause mortality, or on breast cancer recurrence. Analysis of immediately postintervention follow-up values and change from baseline to end of intervention scores revealed that physical activity interventions resulted in significant small-to-moderate improvements in HRQoL (standardised mean difference (SMD) 0.39, 95% CI 0.21 to 0.57, 22 studies, 1996 women; SMD 0.78, 95% CI 0.39 to 1.17, 14 studies, 1459 women, respectively; low-quality evidence), emotional function (SMD 0.21, 95% CI 0.10 to 0.32, 26 studies, 2102 women, moderate-quality evidence; SMD 0.31, 95% CI 0.09 to 0.53, 15 studies, 1579 women, respectively; low-quality evidence), perceived physical function (SMD 0.33, 95% CI 0.18 to 0.49, 25 studies, 2129 women; SMD 0.60, 95% CI 0.23 to 0.97, 13 studies, 1433 women, respectively; moderate-quality evidence), anxiety (SMD -0.57, 95% CI -0.95 to -0.19, 7 studies, 326 women; SMD -0.37, 95% CI -0.63 to -0.12, 4 studies, 235 women, respectively; low-quality evidence), and cardiorespiratory fitness (SMD 0.44, 95% CI 0.30 to 0.58, 23 studies, 1265 women, moderate-quality evidence; SMD 0.83, 95% CI 0.40 to 1.27, 9 studies, 863 women, respectively; very low-quality evidence). Investigators reported few minor adverse events. Small improvements in physical activity interventions were sustained for three months or longer postintervention in fatigue (SMD -0.43, 95% CI -0.60 to -0.26; SMD -0.47, 95% CI -0.84 to -0.11, respectively), cardiorespiratory fitness (SMD 0.36, 95% CI 0.03 to 0.69; SMD 0.42, 95% CI 0.05 to 0.79, respectively), and self-reported physical activity (SMD 0.44, 95% CI 0.17 to 0.72; SMD 0.51, 95% CI 0.08 to 0.93, respectively) for both follow-up values and change from baseline scores. However, evidence of heterogeneity across trials was due to variation in intervention components (i.e. mode, frequency, intensity, duration of intervention and sessions) and measures used to assess outcomes. All trials reviewed were at high risk of performance bias, and most were also at high risk of detection, attrition, and selection bias. In light of the aforementioned issues, we determined that the evidence was of very low, low, or moderate quality. Authors' conclusions: No conclusions regarding breast cancer-related and all-cause mortality or breast cancer recurrence were possible. However, physical activity interventions may have small-to-moderate beneficial effects on HRQoL, and on emotional or perceived physical and social function, anxiety, cardiorespiratory fitness, and self-reported and objectively measured physical activity. The positive results reported in the current review must be interpreted cautiously owing to very low-to-moderate quality of evidence, heterogeneity of interventions and outcome measures, imprecision of some estimates, and risk of bias in many trials. Future studies with low risk of bias are required to determine the optimal combination of physical activity modes, frequencies, intensities, and durations needed to improve specific outcomes among women who have undergone adjuvant therapy.Published versio
    • …
    corecore