14,233 research outputs found

    The inner disk radius in the propeller phase and accretion-propeller transition of neutron stars

    Full text link
    We have investigated the critical conditions required for a steady propeller effect for magnetized neutron stars with optically thick, geometrically thin accretion disks. We have shown through simple analytical calculations that a steady-state propeller mechanism cannot be sustained at an inner disk radius where the viscous and magnetic stresses are balanced. The radius calculated by equating these stresses is usually found to be close to the conventional Alfven radius for spherical accretion, r_A. Our results show that: (1) a steady propeller phase can be established with a maximum inner disk radius that is at least \sim 15 times smaller than r_A depending on the mass-flow rate of the disk, rotational period and strength of the magnetic dipole field of the star, (2) the critical accretion rate corresponding to the accretion-propeller transition is orders of magnitude lower than the rate estimated by equating r_A to the co-rotation radius. Our results are consistent with the properties of the transitional millisecond pulsars which show transitions between the accretion powered X-ray pulsar and the rotational powered radio pulsar states.Comment: 6 pages, accepted for publication in MNRA

    Performances of the NA48 Liquid Krypton calorimeter

    Get PDF
    The NA48 experiments aims at a precise measurement of direct CP violation in the neutral Kaon system. This puts stringent requirements on the electromagnetic calorimeter used to detect photons of average energy 25 GeV. The choice of NA48 is a quasi homogeneous Liquid Krypton calorimeter with fast readout. The operation of this device and the performances achieved are described.Comment: 15 page

    Design optimization for cost and quality: The robust design approach

    Get PDF
    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process

    Equivariant Fields in an SU(N)SU({\cal N}) Gauge Theory with new Spontaneously Generated Fuzzy Extra Dimensions

    Full text link
    We find new spontaneously generated fuzzy extra dimensions emerging from a certain deformation of N=4N=4 supersymmetric Yang-Mills (SYM) theory with cubic soft supersymmetry breaking and mass deformation terms. First, we determine a particular four dimensional fuzzy vacuum that may be expressed in terms of a direct sum of product of two fuzzy spheres, and denote it in short as SF2 Int×SF2 IntS_F^{2\, Int}\times S_F^{2\, Int}. The direct sum structure of the vacuum is revealed by a suitable splitting of the scalar fields in the model in a manner that generalizes our approach in \cite{Seckinson}. Fluctuations around this vacuum have the structure of gauge fields over SF2 Int×SF2 IntS_F^{2\, Int}\times S_F^{2\, Int}, and this enables us to conjecture the spontaneous broken model as an effective U(n)U(n) (n<N)(n < {\cal N}) gauge theory on the product manifold M4×SF2 Int×SF2 IntM^4 \times S_F^{2\, Int} \times S_F^{2\, Int}. We support this interpretation by examining the U(4)U(4) theory and determining all of the SU(2)×SU(2)SU(2)\times SU(2) equivariant fields in the model, characterizing its low energy degrees of freedom. Monopole sectors with winding numbers (±1,0), (0,±1), (±1,±1)(\pm 1,0),\,(0,\pm1),\,(\pm1,\pm 1) are accessed from SF2 Int×SF2 IntS_F^{2\, Int}\times S_F^{2\, Int} after suitable projections and subsequently equivariant fields in these sectors are obtained. We indicate how Abelian Higgs type models with vortex solutions emerge after dimensionally reducing over the fuzzy monopole sectors as well. A family of fuzzy vacua is determined by giving a systematic treatment for the splitting of the scalar fields and it is made manifest that suitable projections of these vacuum solutions yield all higher winding number fuzzy monopole sectors. We observe that the vacuum configuration SF2 Int×SF2 IntS_F^{2\, Int}\times S_F^{2\, Int} identifies with the bosonic part of the product of two fuzzy superspheres with OSP(2,2)×OSP(2,2)OSP(2,2)\times OSP(2,2) supersymmetry and elaborate on this feature.Comment: 38+1 pages, published versio

    Trajectories with suppressed tensor-to-scalar ratio in Aligned Natural Inflation

    Full text link
    In Aligned Natural Inflation, an alignment between different potential terms produces an inflaton excursion greater than the axion scales in the potential. We show that, starting from a general potential of two axions with two aligned potential terms, the effective theory for the resulting light direction is characterized by four parameters: an effective potential scale, an effective axion constant, and two extra parameters (related to ratios of the axion scales and the potential scales in the 2−2-field theory). For all choices of these extra parameters, the model can support inflation along valleys (in the 2−2-field space) that end in minima of the potential. This leads to a phenomenology similar to that of single field Natural Inflation. For a significant range of the extra two parameters, the model possesses also higher altitude inflationary trajectories passing through saddle points of the 2−2-field potential, and disconnected from any minimum. These plateaus end when the heavier direction becomes unstable, and therefore all of inflation takes place close to the saddle point, where - due to the higher altitude - the potential is flatter (smaller ϵ\epsilon parameter). As a consequence, a tensor-to-scalar ratio r=O(10−4−10−2)r = {\rm O } \left( 10^{-4} - 10^{-2} \right) can be easily achieved in the allowed nsn_s region, well within the latest 1σ1 \sigma CMB contours

    From Discrete to Continuous: Modeling Volatility of the Istanbul Stock Exchange Market with GARCH and COGARCH

    Get PDF
    The objective of this paper is to model the volatility of Istanbul Stock Exchange market, ISE100 Index by ARMA and GARCH models and then take a step further into the analysis from discrete modeling to continuous modeling. Through applying unit root and stationary tests on the log return of the index, we found that log return of ISE100 data is stationary. Best candidate model chosen was found to be AR(1)~GARCH(1,1) by AIC and BIC criteria. Then using the parameters from the discrete model, COGARCH(1,1) was applied as a continuous model
    • …
    corecore