8,705 research outputs found

    Presentational/Existential Structures in Spoken versus Written German: Es Gibt and SEIN

    Get PDF
    This article presents a synchronic, corpus-based examination of spoken German with regard to the distribution and function of presentational/ existential es gibt NP and a range of SEIN NP structures such as da SEIN , locative SEIN , es SEIN , and zero-locative SEIN . In particular, the use of da SEIN has been neglected in previous research. While es gibt is equally frequent in the spoken and written data, SEIN structures are typical of spoken German only, with da SEIN being the most frequent. The article concentrates on clauses with indefinite NPs, while the presentation of events with da and wider da-usage in spoken German are also considered

    The Past-Future Asymmetry

    Get PDF
    As the past-future asymmetry – that fact that we have records of the past but not the future – is still a puzzle the aim of this paper is twofold: a) to explain the asymmetry and its status in philosophy and physics and to critically review the proposed solutions to this puzzle; b) to advance a dynamic solution to the puzzle (which is lacking in alternative proposals) in terms of the ‘universality’ of the entropy relation in statistical mechanics

    Optothermal microfluidics

    Get PDF

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    Approximating Optimal Bounds in Prompt-LTL Realizability in Doubly-exponential Time

    Get PDF
    We consider the optimization variant of the realizability problem for Prompt Linear Temporal Logic, an extension of Linear Temporal Logic (LTL) by the prompt eventually operator whose scope is bounded by some parameter. In the realizability optimization problem, one is interested in computing the minimal such bound that allows to realize a given specification. It is known that this problem is solvable in triply-exponential time, but not whether it can be done in doubly-exponential time, i.e., whether it is just as hard as solving LTL realizability. We take a step towards resolving this problem by showing that the optimum can be approximated within a factor of two in doubly-exponential time. Also, we report on a proof-of-concept implementation of the algorithm based on bounded LTL synthesis, which computes the smallest implementation of a given specification. In our experiments, we observe a tradeoff between the size of the implementation and the bound it realizes. We investigate this tradeoff in the general case and prove upper bounds, which reduce the search space for the algorithm, and matching lower bounds.Comment: In Proceedings GandALF 2016, arXiv:1609.0364
    corecore