24 research outputs found

    A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Get PDF
    The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems

    African Linguistics in Central and Eastern Europe, and in the Nordic Countries

    Get PDF
    Non peer reviewe

    Zinc Supplementation Enhances Hepatic Regeneration by Preserving Hepatocyte Nuclear Factor-4α in Mice Subjected to Long-Term Ethanol Administration

    No full text
    Alcoholic liver disease is associated with sustained liver damage and impaired regeneration, as well as significant zinc deficiency. This study was undertaken to examine whether dietary zinc supplementation could improve liver regeneration by increasing the expression of genes involved in hepatic cellular proliferation in a mouse model of alcoholic liver disease. Adult 129S6 mice fed an ethanol-containing liquid diet for 6 months developed alcoholic liver disease as measured by serum alanine transferase activity and histopathological changes. Zinc supplementation to ethanol-exposed mice enhanced liver regeneration as indicated by increased numbers of proliferation cell nuclear antigen (PCNA)-positive and bromodeoxyuridine (BrdU)-labeled hepatocytes. Zinc-enhanced liver regeneration was associated with an increase in hepatocyte nuclear factor-4α (HNF-4α), a liver-enriched, zinc-finger transcription factor. Studies using cultured HepG2 cells showed that zinc deficiency suppressed cell proliferation and cell proliferation-related proteins, including hepatocyte growth factor (HGF), insulin-like growth factor I (IGF-I), insulin-like growth factor binding protein 1 (IGFBP1), metallothionein (MT), and cyclin D1, as well as HNF-4α. HNF-4α gene silencing inhibited cell proliferation in association with decreased protein levels of IGF-I, IGFBP1, MT, and cyclin D1. The present study provides evidence that zinc supplementation enhances liver regeneration at least in part by HNF-4α through the up-regulation of cell proliferation-related proteins, suggesting that dietary zinc supplementation may have beneficial effects in alcoholic liver disease

    Cellular Zinc and Redox Buffering Capacity of Metallothionein/Thionein in Health and Disease

    No full text
    Zinc is involved in virtually all aspects of cellular and molecular biology as a catalytic, structural, and regulatory cofactor in over 1000 proteins. Zinc binding to proteins requires an adequate supply of zinc and intact molecular mechanisms for redistributing zinc ions to make them available at the right time and location. Several dozen gene products participate in this process, in which interactions between zinc and sulfur donors determine the mobility of zinc and establish coupling between cellular redox state and zinc availability. Specifically, the redox properties of metallothionein and its apoprotein thionein are critical for buffering zinc ions and for controlling fluctuations in the range of picomolar concentrations of “free” zinc ions in cellular signaling. Metallothionein and other proteins with sulfur coordination environments are sensitive to redox perturbations and can render cells susceptible to injury when oxidative stress compromises the cellular redox and zinc buffering capacity in chronic diseases. The implications of these fundamental principles for zinc metabolism in type 2 diabetes are briefly discussed
    corecore