294 research outputs found

    Biodiesel Processing Using Sodium and Potassium Geopolymer Powders as Heterogeneous Catalysts

    Get PDF
    This work investigates the catalytic activity of geopolymers produced using two different alkali components (sodium or potassium) and four treatment temperatures (110 to 700 \ub0C) for the methyl transesterification of soybean oil. The geopolymers were prepared with metakaolin as an aluminosilicate source and alkaline activating solutions containing either sodium or potassium in the same molar oxide proportions. The potassium-based formulation displayed a higher specific surface area and lower average pore size (28.64-62.54 m\ub2/g; 9 nm) than the sodium formulation (6.34-32.62 m\ub2/g; 17 nm). The reduction in specific surface area (SSA) after the heat treatment was more severe for the sodium formulation due to the higher thermal shrinkage. The catalytic activity of the geopolymer powders was compared under the same reactional conditions (70-75 \ub0C, 150% methanol excess, 4 h reaction) and same weight amounts (3% to oil). The differences in performance were attributed to the influences of sodium and potassium on the geopolymerization process and to the accessibility of the reactants to the catalytic sites. The Na-based geopolymers performed better, with FAME contents in the biodiesel phase of 85.1% and 89.9% for samples treated at 500 and 300 \ub0C, respectively. These results are competitive in comparison with most heterogeneous base catalysts reported in the literature, considering the very mild conditions of temperature, excess methanol and catalyst amount and the short time spent in reactions

    Carbon Nitrogen, and Oxygen Galactic Gradients: A Solution to the Carbon Enrichment Problem

    Full text link
    Eleven models of Galactic chemical evolution, differing in the carbon, nitrogen,and oxygen yields adopted, have been computed to reproduce the Galactic O/H values obtained from H II regions. All the models fit the oxygen gradient, but only two models fit also the carbon gradient, those based on carbon yields that increase with metallicity due to stellar winds in massive stars (MS) and decrease with metallicity due to stellar winds in low and intermediate mass stars (LIMS). The successful models also fit the C/O versus O/H evolution history of the solar vicinity obtained from stellar observations. We also compare the present day N/H gradient and the N/O versus O/H and the C/Fe, N/Fe, O/Fe versus Fe/H evolution histories of the solar vicinity predicted by our two best models with those derived from H II regions and from stellar observations. While our two best models fit the C/H and O/H gradients as well as the C/O versus O/H history, only Model 1 fits well the N/H gradient and the N/O values for metal poor stars but fails to fit the N/H values for metal rich stars. Therefore we conclude that our two best models solve the C enrichment problem, but that further work needs to be done on the N enrichment problem. By adding the C and O production since the Sun was formed predicted by Models 1 and 2 to the observed solar values we find an excellent agreement with the O/H and C/H values of the solar vicinity derived from H II regions O and C recombination lines. One of the most important results of this paper is that the fraction of carbon due to MS and LIMS in the interstellar medium is strongly dependent on time and on the galactocentric distance; at present about half of the carbon in the interstellar medium of the solar vicinity has been produced by MS and half by LIMS.Comment: 34 pages, 6 tables, 7 figures. Accepted for publication in Ap

    From second to first order transitions in a disordered quantum magnet

    Full text link
    We study the spin-glass transition in a disordered quantum model. There is a region in the phase diagram where quantum effects are small and the phase transition is second order, as in the classical case. In another region, quantum fluctuations drive the transition first order. Across the first order line the susceptibility is discontinuous and shows hysteresis. Our findings reproduce qualitatively observations on LiHox_xY1x_{1-x}F4_4. We also discuss a marginally stable spin-glass state and derive some results previously obtained from the real-time dynamics of the model coupled to a bath.Comment: 4 pages, 3 figures, RevTe

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts

    Get PDF
    In this work, we demonstrate that that both human whole skin and freshly isolated skin fibroblasts are productively infected with Dengue virus (DENV). In addition, primary skin fibroblast cultures were established and subsequently infected with DENV-2; we showed in these cells the presence of the viral antigen NS3, and we found productive viral infection by a conventional plaque assay. Of note, the infectivity rate was almost the same in all the primary cultures analyzed from different donors. The skin fibroblasts infected with DENV-2 underwent signaling through both TLR3 and RIG-1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 IRF7, when compared with mock-infected fibroblasts. Our data suggest that fibroblasts might even participate producing mediators involved in innate immunity that activate and contribute to the orchestration of the local innate responses. This work is the first evaluating primary skin fibroblast cultures obtained from different humans, assessing both their susceptibility to DENV infection as well as their ability to produce molecules crucial for innate immunity

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016–40

    Get PDF
    Background: Achieving universal health coverage (UHC) requires health financing systems that provide prepaid pooled resources for key health services without placing undue financial stress on households. Understanding current and future trajectories of health financing is vital for progress towards UHC. We used historical health financing data for 188 countries from 1995 to 2015 to estimate future scenarios of health spending and pooled health spending through to 2040. Methods: We extracted historical data on gross domestic product (GDP) and health spending for 188 countries from 1995 to 2015, and projected annual GDP, development assistance for health, and government, out-of-pocket, and prepaid private health spending from 2015 through to 2040 as a reference scenario. These estimates were generated using an ensemble of models that varied key demographic and socioeconomic determinants. We generated better and worse alternative future scenarios based on the global distribution of historic health spending growth rates. Last, we used stochastic frontier analysis to investigate the association between pooled health resources and UHC index, a measure of a country's UHC service coverage. Finally, we estimated future UHC performance and the number of people covered under the three future scenarios. Findings: In the reference scenario, global health spending was projected to increase from US10trillion(9510 trillion (95% uncertainty interval 10 trillion to 10 trillion) in 2015 to 20 trillion (18 trillion to 22 trillion) in 2040. Per capita health spending was projected to increase fastest in upper-middle-income countries, at 4·2% (3·4–5·1) per year, followed by lower-middle-income countries (4·0%, 3·6–4·5) and low-income countries (2·2%, 1·7–2·8). Despite global growth, per capita health spending was projected to range from only 40(2465)to40 (24–65) to 413 (263–668) in 2040 in low-income countries, and from 140(90200)to140 (90–200) to 1699 (711–3423) in lower-middle-income countries. Globally, the share of health spending covered by pooled resources would range widely, from 19·8% (10·3–38·6) in Nigeria to 97·9% (96·4–98·5) in Seychelles. Historical performance on the UHC index was significantly associated with pooled resources per capita. Across the alternative scenarios, we estimate UHC reaching between 5·1 billion (4·9 billion to 5·3 billion) and 5·6 billion (5·3 billion to 5·8 billion) lives in 2030. Interpretation: We chart future scenarios for health spending and its relationship with UHC. Ensuring that all countries have sustainable pooled health resources is crucial to the achievement of UHC. Funding: The Bill & Melinda Gates Foundation

    Early life risk factors of motor, cognitive and language development: a pooled analysis of studies from low/middle-income countries.

    Get PDF
    OBJECTIVE:To determine the magnitude of relationships of early life factors with child development in low/middle-income countries (LMICs). DESIGN:Meta-analyses of standardised mean differences (SMDs) estimated from published and unpublished data. DATA SOURCES:We searched Medline, bibliographies of key articles and reviews, and grey literature to identify studies from LMICs that collected data on early life exposures and child development. The most recent search was done on 4 November 2014. We then invited the first authors of the publications and investigators of unpublished studies to participate in the study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES:Studies that assessed at least one domain of child development in at least 100 children under 7 years of age and collected at least one early life factor of interest were included in the study. ANALYSES:Linear regression models were used to assess SMDs in child development by parental and child factors within each study. We then produced pooled estimates across studies using random effects meta-analyses. RESULTS:We retrieved data from 21 studies including 20 882 children across 13 LMICs, to assess the associations of exposure to 14 major risk factors with child development. Children of mothers with secondary schooling had 0.14 SD (95% CI 0.05 to 0.25) higher cognitive scores compared with children whose mothers had primary education. Preterm birth was associated with 0.14 SD (-0.24 to -0.05) and 0.23 SD (-0.42 to -0.03) reductions in cognitive and motor scores, respectively. Maternal short stature, anaemia in infancy and lack of access to clean water and sanitation had significant negative associations with cognitive and motor development with effects ranging from -0.18 to -0.10 SDs. CONCLUSIONS:Differential parental, environmental and nutritional factors contribute to disparities in child development across LMICs. Targeting these factors from prepregnancy through childhood may improve health and development of children

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups
    corecore