2,727 research outputs found

    Clinical pathways for patients with giant cell arteritis during the COVID-19 pandemic: an international perspective

    Get PDF
    Giant cell arteritis, a common primary systemic vasculitis affecting older people, presents acutely as a medical emergency and requires rapid specialist assessment and treatment to prevent irreversible vision loss. Disruption of the health-care system caused by the COVID-19 pandemic exposed weak points in clinical pathways for diagnosis and treatment of giant cell arteritis, but has also permitted innovative solutions. The essential roles played by all professionals, including general practitioners and surgeons, in treating these patients have become evident. Patients must also be involved in the reshaping of clinical services. As an international group of authors involved in the care of patients with giant cell arteritis, we reflect in this Viewpoint on rapid service adaptations during the first peak of COVID-19, evaluate challenges, and consider implications for the future

    Perturbative quantum gravity with the Immirzi parameter

    Get PDF
    We study perturbative quantum gravity in the first-order tetrad formalism. The lowest order action corresponds to Einstein-Cartan plus a parity-odd term, and is known in the literature as the Holst action. The coupling constant of the parity-odd term can be identified with the Immirzi parameter of loop quantum gravity. We compute the quantum effective action in the one-loop expansion. As in the metric second-order formulation, we find that in the case of pure gravity the theory is on-shell finite, and the running of Newton's constant and the Immirzi parameter is inessential. In the presence of fermions, the situation changes in two fundamental aspects. First, non-renormalizable logarithmic divergences appear, as usual. Second, the Immirzi parameter becomes a priori observable, and we find that it is renormalized by a four-fermion interaction generated by radiative corrections. We compute its beta function and discuss possible implications. The sign of the beta function depends on whether the Immirzi parameter is larger or smaller than one in absolute value, and the values plus or minus one are UV fixed-points (we work in Euclidean signature). Finally, we find that the Holst action is stable with respect to radiative corrections in the case of minimal coupling, up to higher order non-renormalizable interactions.Comment: v2 minor amendment

    Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    Get PDF
    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours

    The mental health burden of racial and ethnic minorities during the COVID-19 pandemic

    Get PDF
    Racial/ethnic minorities have been disproportionately impacted by COVID-19. The effects of COVID-19 on the long-term mental health of minorities remains unclear. To evaluate differences in odds of screening positive for depression and anxiety among various racial and ethnic groups during the latter phase of the COVID-19 pandemic, we performed a crosssectional analysis of 691,473 participants nested within the prospective smartphone-based COVID Symptom Study in the United States (U.S.) and United Kingdom (U.K). from February 23, 2021 to June 9, 2021. In the U.S. (n=57,187), compared to White participants, the multivariable odds ratios (ORs) for screening positive for depression were 1 16 (95% CI: 1 02 to 1 31) for Black, 1 23 (1 11 to 1 36) for Hispanic, and 1 15 (1 02 to 1 30) for Asian participants, and 1 34 (1 13 to 1 59) for participants reporting more than one race/other even after accounting for personal factors such as prior history of a mental health disorder, COVID-19 infection status, and surrounding lockdown stringency. Rates of screening positive for anxiety were comparable. In the U.K. (n=643,286), racial/ethnic minorities had similarly elevated rates of positive screening for depression and anxiety. These disparities were not fully explained by changes in leisure time activities. Racial/ethnic minorities bore a disproportionate mental health burden during the COVID-19 pandemic. These differences will need to be considered as health care systems transition from prioritizing infection control to mitigating long-term consequences

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Acute kidney injury in children

    Get PDF
    Acute kidney injury (AKI) (previously called acute renal failure) is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. The incidence of AKI in children appears to be increasing, and the etiology of AKI over the past decades has shifted from primary renal disease to multifactorial causes, particularly in hospitalized children. Genetic factors may predispose some children to AKI. Renal injury can be divided into pre-renal failure, intrinsic renal disease including vascular insults, and obstructive uropathies. The pathophysiology of hypoxia/ischemia-induced AKI is not well understood, but significant progress in elucidating the cellular, biochemical and molecular events has been made over the past several years. The history, physical examination, and laboratory studies, including urinalysis and radiographic studies, can establish the likely cause(s) of AKI. Many interventions such as ‘renal-dose dopamine’ and diuretic therapy have been shown not to alter the course of AKI. The prognosis of AKI is highly dependent on the underlying etiology of the AKI. Children who have suffered AKI from any cause are at risk for late development of kidney disease several years after the initial insult. Therapeutic interventions in AKI have been largely disappointing, likely due to the complex nature of the pathophysiology of AKI, the fact that the serum creatinine concentration is an insensitive measure of kidney function, and because of co-morbid factors in treated patients. Improved understanding of the pathophysiology of AKI, early biomarkers of AKI, and better classification of AKI are needed for the development of successful therapeutic strategies for the treatment of AKI

    Psychometric Curve and Behavioral Strategies for Whisker-Based Texture Discrimination in Rats

    Get PDF
    The rodent whisker system is a major model for understanding neural mechanisms for tactile sensation of surface texture (roughness). Rats discriminate surface texture using the whiskers, and several theories exist for how texture information is physically sensed by the long, moveable macrovibrissae and encoded in spiking of neurons in somatosensory cortex. However, evaluating these theories requires a psychometric curve for texture discrimination, which is lacking. Here we trained rats to discriminate rough vs. fine sandpapers and grooved vs. smooth surfaces. Rats intermixed trials at macrovibrissa contact distance (nose >2 mm from surface) with trials at shorter distance (nose <2 mm from surface). Macrovibrissae were required for distant contact trials, while microvibrissae and non-whisker tactile cues were used for short distance trials. A psychometric curve was measured for macrovibrissa-based sandpaper texture discrimination. Rats discriminated rough P150 from smoother P180, P280, and P400 sandpaper (100, 82, 52, and 35 µm mean grit size, respectively). Use of olfactory, visual, and auditory cues was ruled out. This is the highest reported resolution for rodent texture discrimination, and constrains models of neural coding of texture information

    Hot embossing for fabrication of a microfluidic 3D cell culture

    Get PDF
    Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant
    corecore