49 research outputs found
Past, present, and future of global health financing : a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050
Background Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings Between 1995 and 2016, health spending grew at a rate of 4.00% (95% uncertainty interval 3.89-4.12) annually, although it grew slower in per capita terms (2.72% [2.61-2.84]) and increased by less than 8.0 trillion (7.8-8.1) in 2016 (comprising 8.6% [8.4-8.7] of the global economy and 5252 (5184-5319) in high-income countries, 81 (74-89) in lower-middle-income countries, and 9.5 billion, 24.3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6.27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH ( 15.0 trillion (14.0-16.0) by 2050 (reaching 9.4% [7.6-11.3] of the global economy and $ 21.3 trillion [19.8-23.1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1.84% (1.68-2.02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0.6% (0.6-0.7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15.7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130.2 (122.9-136.9) in 2016 and is projected to remain at similar levels in 2050 (125.9 [113.7-138.1]). The decomposition analysis identified governments' increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets.Peer reviewe
Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050
Background: Comprehensive and comparable estimates of health spending in each country are a key input for health
policy and planning, and are necessary to support the achievement of national and international health goals. Previous
studies have tracked past and projected future health spending until 2040 and shown that, with economic development,
countries tend to spend more on health per capita, with a decreasing share of spending from development assistance
and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending,
with an emphasis on equity in spending across countries.
Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three
categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance
for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear
mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050
and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and
revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data
were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private,
and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power
parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition
methods to assess a set of factors associated with changes in government health spending between 1995 and 2016
and to examine evidence to support the theory of the health financing transition. We projected two alternative future
scenarios based on higher government health spending to assess the potential ability of governments to generate
more resources for health.
Findings: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12)
annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than 8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and 5252 (5184–5319) in high-income
countries, 81 (74–89) in lower-middle-income countries, and
9·5 billion, 24·3% of total DAH), although spending on other infectious diseases
(excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH
were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation).
For the first time, we included estimates of China’s contribution to DAH (15·0 trillion (14·0–16·0) by 2050 (reaching 9·4% [7·6–11·3] of the global
economy and $21·3 trillion [19·8–23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of
1·84% (1·68–2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate
that 0·6% (0·6–0·7) of health spending will occur in currently low-income countries, despite these countries
comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in
high-income and low-income countries was 130·2 (122·9–136·9) in 2016 and is projected to remain at similar levels
in 2050 (125·9 [113·7–138·1]). The decomposition analysis identified governments’ increased prioritisation of the
health sector and economic development as the strongest factors associated with increases in government health
spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the
health sector and increased government spending, health spending per capita could more than double, with greater
impacts in countries that currently have the lowest levels of government health spending
Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue
increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health
spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income
countries. Many low-income countries are expected to remain dependent on development assistance, although with
greater government spending, larger investments in health are feasible. In the absence of sustained new investments
in health, increasing efficiency in health spending is essential to meet global health targets.
Funding: Bill & Melinda Gates Foundatio
Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017
Background
Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories.
Methods
We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections.
Findings
Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets.
Interpretation
Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact
Smoking prevalence and attributable disease burden in 195 countries and territories, 1990-2015 : a systematic analysis from the Global Burden of Disease Study 2015
Background The scale-up of tobacco control, especially after the adoption of the Framework Convention for Tobacco Control, is a major public health success story. Nonetheless, smoking remains a leading risk for early death and disability worldwide, and therefore continues to require sustained political commitment. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) offers a robust platform through which global, regional, and national progress toward achieving smoking-related targets can be assessed. Methods We synthesised 2818 data sources with spatiotemporal Gaussian process regression and produced estimates of daily smoking prevalence by sex, age group, and year for 195 countries and territories from 1990 to 2015. We analysed 38 risk-outcome pairs to generate estimates of smoking-attributable mortality and disease burden, as measured by disability-adjusted life-years (DALYs). We then performed a cohort analysis of smoking prevalence by birth-year cohort to better understand temporal age patterns in smoking. We also did a decomposition analysis, in which we parsed out changes in all-cause smoking-attributable DALYs due to changes in population growth, population ageing, smoking prevalence, and risk-deleted DALY rates. Finally, we explored results by level of development using the Socio-demographic Index (SDI). Findings Worldwide, the age-standardised prevalence of daily smoking was 25.0% (95% uncertainty interval [UI] 24.2-25.7) for men and 5.4% (5.1-5.7) for women, representing 28.4% (25.8-31.1) and 34.4% (29.4-38.6) reductions, respectively, since 1990. A greater percentage of countries and territories achieved significant annualised rates of decline in smoking prevalence from 1990 to 2005 than in between 2005 and 2015; however, only four countries had significant annualised increases in smoking prevalence between 2005 and 2015 (Congo [Brazzaville] and Azerbaijan for men and Kuwait and Timor-Leste for women). In 2015, 11.5% of global deaths (6.4 million [95% UI 5.7-7.0 million]) were attributable to smoking worldwide, of which 52.2% took place in four countries (China, India, the USA, and Russia). Smoking was ranked among the five leading risk factors by DALYs in 109 countries and territories in 2015, rising from 88 geographies in 1990. In terms of birth cohorts, male smoking prevalence followed similar age patterns across levels of SDI, whereas much more heterogeneity was found in age patterns for female smokers by level of development. While smoking prevalence and risk-deleted DALY rates mostly decreased by sex and SDI quintile, population growth, population ageing, or a combination of both, drove rises in overall smoking-attributable DALYs in low-SDI to middle-SDI geographies between 2005 and 2015. Interpretation The pace of progress in reducing smoking prevalence has been heterogeneous across geographies, development status, and sex, and as highlighted by more recent trends, maintaining past rates of decline should not be taken for granted, especially in women and in low-SDI to middle-SDI countries. Beyond the effect of the tobacco industry and societal mores, a crucial challenge facing tobacco control initiatives is that demographic forces are poised to heighten smoking's global toll, unless progress in preventing initiation and promoting cessation can be substantially accelerated. Greater success in tobacco control is possible but requires effective, comprehensive, and adequately implemented and enforced policies, which might in turn require global and national levels of political commitment beyond what has been achieved during the past 25 years.Peer reviewe
Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: progress towards Sustainable Development Goal 3
Background: Sustainable Development Goal (SDG) 3 aims to “ensure healthy lives and promote well-being for all at all
ages”. While a substantial effort has been made to quantify progress towards SDG3, less research has focused on
tracking spending towards this goal. We used spending estimates to measure progress in financing the priority areas
of SDG3, examine the association between outcomes and financing, and identify where resource gains are most
needed to achieve the SDG3 indicators for which data are available.
Methods: We estimated domestic health spending, disaggregated by source (government, out-of-pocket, and prepaid
private) from 1995 to 2017 for 195 countries and territories. For disease-specific health spending, we estimated
spending for HIV/AIDS and tuberculosis for 135 low-income and middle-income countries, and malaria in
106 malaria-endemic countries, from 2000 to 2017. We also estimated development assistance for health (DAH) from
1990 to 2019, by source, disbursing development agency, recipient, and health focus area, including DAH for
pandemic preparedness. Finally, we estimated future health spending for 195 countries and territories from 2018 until
2030. We report all spending estimates in inflation-adjusted 2019 US7·9 trillion (95% uncertainty interval 7·8–8·0) in 2017 and is expected to increase to 20·2 billion
(17·0–25·0) and on tuberculosis it was 5·1 billion (4·9–5·4). Development assistance for health was 374 million of DAH was provided
for pandemic preparedness, less than 1% of DAH. Although spending has increased across HIV/AIDS, tuberculosis,
and malaria since 2015, spending has not increased in all countries, and outcomes in terms of prevalence, incidence,
and per-capita spending have been mixed. The proportion of health spending from pooled sources is expected to
increase from 81·6% (81·6–81·7) in 2015 to 83·1% (82·8–83·3) in 2030.
Interpretation: Health spending on SDG3 priority areas has increased, but not in all countries, and progress towards
meeting the SDG3 targets has been mixed and has varied by country and by target. The evidence on the scale-up of
spending and improvements in health outcomes suggest a nuanced relationship, such that increases in spending do
not always results in improvements in outcomes. Although countries will probably need more resources to achieve
SDG3, other constraints in the broader health system such as inefficient allocation of resources across interventions
and populations, weak governance systems, human resource shortages, and drug shortages, will also need to be
addressed.
Funding: The Bill & Melinda Gates Foundatio
Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019
Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40.0% (95% uncertainty interval [UI] 39.4-40.7) to 50.3% (50.0-50.5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46.3% (95% UI 46.1-46.5) in 2017, compared with 28.7% (28.5-29.0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88.6% (95% UI 87.2-89.7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664-711) of the 1830 (1797-1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76.1% (95% UI 71.6-80.7) of countries from 2000 to 2017, and in 53.9% (50.6-59.6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019
Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group