622 research outputs found

    Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels

    Get PDF
    The concept of an evacuated flat plate (EFP) collector was proposed over 40 years ago but, despite its professed advantages, very few manufacturers have developed commercial versions. This situation suggests both technical difficulties in manufacturing a competitively-priced sealed for life panel and a lack of awareness of the bene fits of such panels. This paper demonstrates an evacuated flat plate simulation that closely models experimental efficiency measurements. Having established the validity of the model, it compares published data for a commercial EFP collector with predictions for an optimal design to investigate whether any further efficiency improvement might be possible. The optimised design is then evaluated against alternative solar energy devices by modelling a number of possible applications. These comparisons should inform choices about solar options for delivering heat: EFP collectors are well-suited to some of these applications. Evacuated flat plate collectors are a possible alternative to concentrating collectors for Organic Rankine Cycle power generation. The annual output for all the modelled collectors was found to be a quadratic function of delivery temperature: this enabled a novel optimisation of ORC source temperature. Predictions for concentrating and non-concentrating ORC plant are compared with a PV/thermal alternative. The ORC output is significantly less than a PV panel would achieve; applications needing both heat and power are better served by PVT panels. This is an original and novel result

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Natural Genome Diversity of AI-2 Quorum Sensing in Escherichia coli: Conserved Signal Production but Labile Signal Reception

    Get PDF
    Quorum sensing (QS) regulates the onset of bacterial social responses in function to cell density having an important impact in virulence. Autoinducer-2 (AI-2) is a signal that has the peculiarity of mediating both intra- and interspecies bacterial QS. We analyzed the diversity of all components of AI-2 QS across 44 complete genomes of Escherichia coli and Shigella strains. We used phylogenetic tools to study its evolution and determined the phenotypes of single-deletion mutants to predict phenotypes of natural strains. Our analysis revealed many likely adaptive polymorphisms both in gene content and in nucleotide sequence. We show that all natural strains possess the signal emitter (the luxS gene), but many lack a functional signal receptor (complete lsr operon) and the ability to regulate extracellular signal concentrations. This result is in striking contrast with the canonical species-specific QS systems where one often finds orphan receptors, without a cognate synthase, but not orphan emitters. Our analysis indicates that selection actively maintains a balanced polymorphism for the presence/absence of a functional lsr operon suggesting diversifying selection on the regulation of signal accumulation and recognition. These results can be explained either by niche-specific adaptation or by selection for a coercive behavior where signal-blind emitters benefit from forcing other individuals in the population to haste in cooperative behaviors.International Early Career Scientist grant from the Howard Hughes Medical Institute: (HHMI 55007436), Institut Pasteur, the CNRS, FCT award: (SFRH/BPD/26852/2006), salary support of LAO/ITQB & FCT

    Search for electroweak production of single top quarks in ppˉp\bar{p} collisions.

    Get PDF
    We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process ppbar->tb+X of 39 pb. The upper limit for the t-channel process ppbar->tqb+X is 58 pb. (arXiv

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore