36 research outputs found

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication

    Full text link
    Pharmacological targeting of metabolic processes in cancer must overcome redundancy in biosynthetic pathways. Deoxycytidine (dC) triphosphate (dCTP) can be produced both by the de novo pathway (DNP) and by the nucleoside salvage pathway (NSP). However, the role of the NSP in dCTP production and DNA synthesis in cancer cells is currently not well understood. We show that acute lymphoblastic leukemia (ALL) cells avoid lethal replication stress after thymidine (dT)-induced inhibition of DNP dCTP synthesis by switching to NSP-mediated dCTP production. The metabolic switch in dCTP production triggered by DNP inhibition is accompanied by NSP up-regulation and can be prevented using DI-39, a new high-affinity small-molecule inhibitor of the NSP rate-limiting enzyme dC kinase (dCK). Positron emission tomography (PET) imaging was useful for following both the duration and degree of dCK inhibition by DI-39 treatment in vivo, thus providing a companion pharmacodynamic biomarker. Pharmacological co-targeting of the DNP with dT and the NSP with DI-39 was efficacious against ALL models in mice, without detectable host toxicity. These findings advance our understanding of nucleotide metabolism in leukemic cells, and identify dCTP biosynthesis as a potential new therapeutic target for metabolic interventions in ALL and possibly other hematological malignancies

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    An <em>ex vivo</em> perifusion method for quantitative determination of neuropeptide release from mouse hypothalamic explants.

    No full text
    The hypothalamus is a primary brain area which, in mammals, regulates several physiological functions that are all related to maintaining general homeostasis, by linking the central nervous system (CNS) and the periphery. The hypothalamus itself can be considered an endocrine brain region of some sort as it hosts in its different nuclei several kinds of neuropeptide-producing and -secreting neurons. These neuropeptides have specific roles and participate in the regulation of homeostasis in general, which includes the regulation of energy metabolism, feeding behavior, water intake and body core temperature for example. As previously mentioned, in order to exert their effects, these peptides have to be produced but also, and mostly, to be secreted. In this context, it is of great importance to be able to assess how certain conditions, diseases, or treatments can actually influence the secretion of neuropeptides, thus the function of the different neuropeptidergic circuits. One method to assess this is the perifusion of hypothalamic explants followed by quantification of peptides within the collected fractions. Here, we explain step-by-step how to collect fractions during ex vivo perifusion of hypothalamic explants in which one can determine quantitatively neuropeptide/neurohormone release from these viable isolated tissues. Hypothalami perifusion has two great advantages over other existing assays: (1) it allows pharmacological manipulation to dissect out signaling mechanisms underlying release of different neuropeptides/neurohormones in the hypothalamic explants and, (2) it allows simultaneous experiments with different conditions on multiple hypothalami preparations, (3) it is, to our knowledge, the only method that permits the study of neuropeptide secretion in basal conditions and under repeated stimulations with the same hypothalami explants

    Astrocytic leptin and insulin signals interact to maintain systemic metabolic homeostasis.

    No full text

    A Dual-Band PIFA for MIMO Half-duplex 4G and Future Full-Duplex 5G communication for Mobile Handsets

    No full text
    International audienceThis paper studies the design of a 4G/LTE and 5G antenna system dedicated to mobile terminals (MTs). Achieving this target can’t be detached from the fact of multimode functionality when designing antenna systems for MTs. Moreover, in line with the advantages covered by 5G over previous generations, it is good thinking that 5G acquires the full-duplex (FD) feature, which needs, in turn, multiple antennas. But, the design of multiple antennas in compact MTs is a significant challenge, due to both practical and fundamental design trade-offs. In this paper, multimode mobile antenna system dedicated to FD 5G and Multi-Input-Multi-Output (MIMO) half duplex (HD) 4G applications are designed and studied. The results reveal that it is possible to achieve an efficient multimode antenna system when paying attention to some designing rules during the progress of the study. To demonstrate the effectiveness of the proposed approach, a dual-band Planar Inverted F – Antenna (PIFA) dedicated to MTs was first designed. Based on the obtained results, a double antenna structure, made up of two dual-band PIFA was then proposed. The two antennas terminal provides an isolation of over 20 dB for the 2.6 GHz band and over 35 dB for 3.6 GHz band without additional matching or decoupling structures. A trade-off analysis of bandwidth and efficiency is performed over different antenna locations and configurations. Finally, two fabricated prototypes verify the simulation results for representative cases

    Hypothalamic astrocyte activity state determines systemic glucose metabolism in mice.

    No full text

    Astrocytic UCP2 is required for hypothalamic response to metabolic challenges.

    No full text
    corecore