13 research outputs found

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC

    Get PDF
    The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at √s=13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb −1 for the tt ¯ and γ+jet and 36.7 fb −1 −1 for the dijet event topologies

    In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

    Get PDF
    The response of the ATLAS detector to largeradius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transversemomentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range

    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016

    Get PDF
    The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1 fb1 to 36.7 fb1 of pp collision data at s√=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter

    Inventory of current EU paediatric vision and hearing screening programmes

    Get PDF
    Background: We examined the diversity in paediatric vision and hearing screening programmes in Europe. Methods: Themes relevant for comparison of screening programmes were derived from literature and used to compile three questionnaires on vision, hearing and public-health screening. Tests used, professions involved, age and frequency of testing seem to influence sensitivity, specificity and costs most. Questionnaires were sent to ophthalmologists, orthoptists, otolaryngologists and audiologists involved in paediatric screening in all EU fullmember, candidate and associate states. Answers were cross-checked. Results: Thirty-nine countries participated; 35 have a vision screening programme, 33 a nation-wide neonatal hearing screening programme. Visual acuity (VA) is measured in 35 countries, in 71% more than once. First measurement of VA varies from three to seven years of age, but is usually before the age of five. At age three and four picture charts, including Lea Hyvarinen are used most, in children over four Tumbling-E and Snellen. As first hearing screening test otoacoustic emission (OAE) is used most in healthy neonates, and auditory brainstem response (ABR) in premature newborns. The majority of hearing testing programmes are staged; children are referred after one to four abnormal tests. Vision screening is performed mostly by paediatricians, ophthalmologists or nurses. Funding is mostly by health insurance or state. Coverage was reported as >95% in half of countries, but reporting was often not first-hand. Conclusion: Largest differences were found in VA charts used (12), professions involved in vision screening (10), number of hearing screening tests before referral (1-4) and funding sources (8)

    Psychometric Properties and Correlates of Precarious Manhood Beliefs in 62 Nations

    Get PDF
    Precarious manhood beliefs portray manhood, relative to womanhood, as a social status that is hard to earn, easy to lose, and proven via public action. Here, we present cross-cultural data on a brief measure of precarious manhood beliefs (the Precarious Manhood Beliefs scale [PMB]) that covaries meaningfully with other cross-culturally validated gender ideologies and with country-level indices of gender equality and human development. Using data from university samples in 62 countries across 13 world regions (N = 33,417), we demonstrate: (1) the psychometric isomorphism of the PMB (i.e., its comparability in meaning and statistical properties across the individual and country levels); (2) the PMB’s distinctness from, and associations with, ambivalent sexism and ambivalence toward men; and (3) associations of the PMB with nation-level gender equality and human development. Findings are discussed in terms of their statistical and theoretical implications for understanding widely-held beliefs about the precariousness of the male gender role

    Mobile Metal Ion® analysis of European agricultural soils: bioavailability, weathering, geogenic patterns and anthropogenic anomalies

    No full text
    Two thousand one hundred and eight agricultural soils (0–20 cm depth) collected at a density of one sample per 2500 km2 under the auspices of the Geochemical Mapping of Agricultural Soils (GEMAS) project over most of the European continent have been analysed using the Mobile Metal Ion (MMI®) partial extraction technique with ICP-MS finish. For a number of elements, notably Ce, Ni, and Ca, coherent geogenic patterns have been observed which relate to underlying lithology. For Fe and Al, coherent patterns are also observed but the effects of weathering are evident, and provide a mechanism to explain the acidity of soils in high rainfall areas. Individual anomalies, many related to anthropogenic activity (mining, metallurgy, agriculture) have been observed for Ag, Au, Cu, Pb, Cd and Zn. Comparison of the results with aqua regia digestion and the equivalent National Geochemistry Survey of Australia (NGSA) provides insights into weathering processes and the concept of bioavailability

    Health-related quality of life in multiple sclerosis: Effects of natalizumab

    No full text
    Objective: To report the relationship between disease activity and health-related quality of life (HRQoL) in relapsing multiple sclerosis, and the impact of natalizumab. Methods: HRQoL data were available from 2,113 multiple sclerosis patients in natalizumab clinical studies. In the Natalizumab Safety and Efficacy in Relapsing Remitting Multiple Sclerosis (AFFIRM) study, patients received natalizumab 300mg (n = 627) or placebo (n = 315); in the Safety and Efficacy of Natalizumab in Combination with Interferon Beta-1a in Patients with Relapsing Remitting Multiple Sclerosis (SENTINEL) study, patients received interferon beta-la (IFN-\u3b2-1a) plus natalizumab 300mg (n = 589), or IFN-\u3b2-1a plus placebo (n = 582). The Short Form-36 (SF-36) and a subject global assessment visual analog scale were administered at baseline and weeks 24, 52, and 104. Prespecified analyses included changes from baseline to week 104 in SF-36 and visual analog scale scores. Odds ratios for clinically meaningful improvement or worsening on the SF-36 Physical Component Summary (PCS) and Mental Component Summary were calculated. Results: Mean baseline SF-36 scores were significantly less than the general US population and correlated with Expanded Disability Status Scale scores, sustained disability progression, relapse number, and increased volume of brain magnetic resonance imaging lesions. Natalizumab significantly improved SF-36 PCS and Mental Component Summary scores at week 104 in AFFIRM. PCS changes were significantly improved by week 24 and at all subsequent time points. Natalizumab-treated patients in both studies were more likely to experience clinically important improvement and less likely to experience clinically important deterioration on the SF-36 PCS. The visual analog scale also showed significantly improved HRQoL with natalizumab. Interpretation: HRQoL was impaired in relapsing multiple sclerosis patients, correlated with severity of disease as measured by neurological ratings or magnetic resonance imaging, and improved significantly with natalizumab. \ua9 2007 American Neurological Association. Published by Wiley-Liss, Inc
    corecore