411 research outputs found
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
Model experiment description paperProjections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate model projections made available and analyses performed over the 2018-2020 period.CRESCENDO project members (V. Eyring,
P. Friedlingstein, E. Kriegler, R. Knutti, J. Lowe, K. Riahi, D. van
Vuuren) acknowledge funding received from the Horizon 2020
European Union’s Framework Programme for Research and Innovation
under grant agreement no. 641816. C. Tebaldi, G. A. Meehl
and B. M. Sanderson acknowledge the support of the Regional
and Global Climate Modeling Program (RGCM) of the U.S.
Department of Energy’s, Office of Science (BER), Cooperative
Agreement DE-FC02-97ER6240
Human well‐being and climate change mitigation
Climate change mitigation research is fundamentally motivated by the preservation of human lives and the environmental conditions which enable them. However, the field has to date rather superficial in its appreciation of theoretical claims in well‐being thought, with deep implications for the framing of mitigation priorities, policies, and research. Major strands of well‐being thought are hedonic well‐being—typically referred to as happiness or subjective well‐being—and eudaimonic well‐being, which includes theories of human needs, capabilities, and multidimensional poverty. Aspects of each can be found in political and procedural accounts such as the Sustainable Development Goals. Situating these concepts within the challenges of addressing climate change, the choice of approach is highly consequential for: (1) understanding inter‐ and intra‐generational equity; (2) defining appropriate mitigation strategies; and (3) conceptualizing the socio‐technical provisioning systems that convert biophysical resources into well‐being outcomes. Eudaimonic approaches emphasize the importance of consumption thresholds, beyond which dimensions of well‐being become satiated. Related strands of well‐being and mitigation research suggest constraining consumption to within minimum and maximum consumption levels, inviting normative discussions on the social benefits, climate impacts, and political challenges associated with a given form of provisioning. The question of how current socio‐technical provisioning systems can be shifted towards low‐carbon, well‐being enhancing forms constitutes a new frontier in mitigation research, involving not just technological change and economic incentives, but wide‐ranging social, institutional, and cultural shifts
Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis
Managing the climate commons at the nexus of ecology, behaviour and economics
Sustainably managing coupled ecological–economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions
Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission.
Genome sequencing is revolutionizing clinical microbiology and our understanding of infectious diseases. Previous studies have largely relied on the sequencing of a single isolate from each individual. However, it is not clear what degree of bacterial diversity exists within, and is transmitted between individuals. Understanding this 'cloud of diversity' is key to accurate identification of transmission pathways. Here, we report the deep sequencing of methicillin-resistant Staphylococcus aureus among staff and animal patients involved in a transmission network at a veterinary hospital. We demonstrate considerable within-host diversity and that within-host diversity may rise and fall over time. Isolates from invasive disease contained multiple mutations in the same genes, including inactivation of a global regulator of virulence and changes in phage copy number. This study highlights the need for sequencing of multiple isolates from individuals to gain an accurate picture of transmission networks and to further understand the basis of pathogenesis.Thanks to Dr Alex O’Neill, University of Leeds and Dr Matthew Ellington, Public Health England for provision of RN4220 and RN4200mutS. We thank the core sequencing and informatics team at the Wellcome Trust Sanger Institute for sequencing of the isolates described in this study. This work was supported by a Medical Research Council Partnership grant (G1001787/1) held between the Department of Veterinary Medicine, University of Cambridge (M.A.H.), the School of Clinical Medicine, University of Cambridge (S.J.P.), the Moredun Research Institute, and the Wellcome Trust Sanger Institute (J.P. and S.J.P). S.J.P. receives support from the NIHR Cambridge Biomedical Research Centre. M.T.G.H., S.R.H. and J.P. were funded by Wellcome Trust grant no. 098051. G.G.R.M. was funded by an MRC studentship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms756
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia
<p>Abstract</p> <p>Background</p> <p>Increasing severe vegetation fires worldwide has been attributed to both global environmental change and land management practices. However there is little evidence concerning the population health effects of outdoor air pollution derived from biomass fires. Frequent seasonal bushfires near Darwin, Australia provide an opportunity to examine this issue. We examined the relationship between atmospheric particle loadings <10 microns in diameter (PM<sub>10</sub>), and emergency hospital admissions for cardio-respiratory conditions over the three fire seasons of 2000, 2004 and 2005. In addition we examined the differential impacts on Indigenous Australians, a high risk population subgroup.</p> <p>Methods</p> <p>We conducted a case-crossover analysis of emergency hospital admissions with principal ICD10 diagnosis codes J00–J99 and I00–I99. Conditional logistic regression models were used to calculate odds ratios for admission with 10 μg/m<sup>3 </sup>rises in PM<sub>10</sub>. These were adjusted for weekly influenza rates, same day mean temperature and humidity, the mean temperature and humidity of the previous three days, days with rainfall > 5 mm, public holidays and holiday periods.</p> <p>Results</p> <p>PM<sub>10 </sub>ranged from 6.4 – 70.0 μg/m<sup>3 </sup>(mean 19.1). 2466 admissions were examined of which 23% were for Indigenous people. There was a positive relationship between PM<sub>10 </sub>and admissions for all respiratory conditions (OR 1.08 95%CI 0.98–1.18) with a larger magnitude in the Indigenous subpopulation (OR1.17 95% CI 0.98–1.40). While there was no relationship between PM<sub>10 </sub>and cardiovascular admissions overall, there was a positive association with ischaemic heart disease in Indigenous people, greatest at a lag of 3 days (OR 1.71 95%CI 1.14–2.55).</p> <p>Conclusion</p> <p>PM10 derived from vegetation fires was predominantly associated with respiratory rather than cardiovascular admissions. This outcome is consistent with the few available studies of ambient biomass smoke pollution. Indigenous people appear to be at higher risk of cardio-respiratory hospital admissions associated with exposure to PM10.</p
Carbon sequestration via wood burial
To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink
Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells
<p>Abstract</p> <p>Background</p> <p>All mucosal epithelia, including those of the tubotympanium, are secreting a variety of antimicrobial innate immune molecules (AIIMs). In our previous study, we showed the bactericidal/bacteriostatic functions of AIIMs against various otitis media pathogens. Among the AIIMs, human β-defensin 2 is the most potent molecule and is inducible by exposure to inflammatory stimuli such as bacterial components or proinflammatory cytokines. Even though the β-defensin 2 is an important AIIM, the induction mechanism of this molecule has not been clearly established. We believe that this report is the first attempt to elucidate NTHi induced β-defensin expression in airway mucosa, which includes the middle ear.</p> <p>Methods</p> <p>Monoclonal antibody blocking method was employed in monitoring the TLR-dependent NTHi response. Two gene knock down methods – dominant negative (DN) plasmid and small interfering RNA (siRNA) – were employed to detect and confirm the involvement of several key genes in the signaling cascade resulting from the NTHi stimulated β-defensin 2 expression in human middle ear epithelial cell (HMEEC-1). The student's <it>t</it>-test was used for the statistical analysis of the data.</p> <p>Results</p> <p>The experimental results showed that the major NTHi-specific receptor in HMEEC-1 is the Toll-like receptor 2 (TLR2). Furthermore, recognition of NTHi component(s)/ligand(s) by TLR2, activated the Toll/IL-1 receptor (TIR)-MyD88-IRAK1-TRAF6-MKK3/6-p38 MAPK signal transduction pathway, ultimately leading to the induction of β-defensin 2.</p> <p>Conclusion</p> <p>This study found that the induction of β-defensin 2 is highest in whole cell lysate (WCL) preparations of NTHi, suggesting that the ligand(s) responsible for this up-regulation may be soluble macromolecule(s). We also found that this induction takes place through the TLR2 dependent MyD88-IRAK1-TRAF6-p38 MAPK pathway, with the primary response occurring within the first hour of stimulation. In combination with our previous studies showing that IL-1α-induced β-defensin 2 expression takes place through a MyD88-independent Raf-MEK1/2-ERK MAPK pathway, we found that both signaling cascades act synergistically to up-regulate β-defensin 2 levels. We propose that this confers an essential evolutionary advantage to the cells in coping with infections and may serve to amplify the innate immune response through paracrine signaling.</p
Removal of Heterologous Sequences from Plasmodium falciparum Mutants Using FLPe-Recombinase
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines
- …
