64 research outputs found
Analytical Techniques for the Analysis of Uranium Bearing Materials
The interest in the use of nuclear power has increased drastically in recent years. This is due to significantly increased efficiency at producing energy when compared to fossil fuels. With the increased use of nuclear power comes an increased need to for monitor for uranium bearing materials outside of regulatory control. This dissertation covers four projects aimed at improving the analysis of these materials. The first projects aims to develop a method that allows for the analysis of elements that exist in nature as anions by triple quadrupole ICP – MS. This would allow for the ability to measure more potential attributes of uranium bearing materials with the added benefits provided by ICP – MS such as lower limits of detection. The second project sought to apply this method to the analysis of a Springfield sample set of uranium ore concentrates, and to compare the results to that obtained by pyrohydrolysis with ion chromatography. The next project was the development of a separation method that would allow for the separation of the Hf-Lu, Rb-Sr, Nd-Sm, Pb and U systems with only one aliquot of sample used. This would be especially useful in cases where there is very little sample available. The final project involves another separation although this is a liquid-liquid extraction of Nd in ionic liquid. For this project potentiometric titrations were performed to determine the proton affinity distribution of various ligands to better understand their potential usefulness in the separation of rare earth elements from the nuclear fuel cycle. A spectrophotometric method was also validated in order to determine the stability constant of a complex formed between a ligan and Nd. Each of these projects aims towards providing analytical techniques for that analysis materials that could be collected during the nuclear fuel cycle
Comparison of the within-reader and inter-vendor agreement of left ventricular circumferential strains and volume indices derived from cardiovascular magnetic resonance imaging
PurposeVolume indices and left ventricular ejection fraction (LVEF) are routinely used to assess cardiac function. Ventricular strain values may provide additional diagnostic information, but their reproducibility is unclear. This study therefore compares the repeatability and reproducibility of volumes, volume fraction, and regional ventricular strains, derived from cardiovascular magnetic resonance (CMR) imaging, across three software packages and between readers.MethodsSeven readers analysed 16 short-axis CMR stacks of a porcine heart. Endocardial contours were manually drawn using OsiriX and Simpleware ScanIP and repeated in both softwares. The images were also contoured automatically in Circle CVI42. Endocardial global, apical, mid-ventricular, and basal circumferential strains, as well as end-diastolic and end-systolic volume and LVEF were compared.ResultsBland-Altman analysis found systematic biases in contour length between software packages. Compared to OsiriX, contour lengths were shorter in both ScanIP (-1.9 cm) and CVI42 (-0.6 cm), causing statistically significant differences in end-diastolic and end-systolic volumes, and apical circumferential strain (all pConclusionOsiriX and CVI42 gave consistent results for all strain and volume metrics, with no statistical differences found between OsiriX and ScanIP for mid-ventricular, global or basal strains, or left ventricular ejection fraction. However, volumes were influenced by the choice of contouring software, suggesting care should be taken when comparing volumes across different software
A dual role for prediction error in associative learning
Confronted with a rich sensory environment, the brain must learn
statistical regularities across sensory domains to construct causal
models of the world. Here, we used functional magnetic resonance
imaging and dynamic causal modeling (DCM) to furnish neurophysiological
evidence that statistical associations are learnt, even when
task-irrelevant. Subjects performed an audio-visual target-detection
task while being exposed to distractor stimuli. Unknown to them,
auditory distractors predicted the presence or absence of subsequent
visual distractors. We modeled incidental learning of these associations
using a Rescorla--Wagner (RW) model. Activity in primary visual
cortex and putamen reflected learning-dependent surprise: these areas
responded progressively more to unpredicted, and progressively less
to predicted visual stimuli. Critically, this prediction-error response
was observed even when the absence of a visual stimulus was
surprising. We investigated the underlying mechanism by embedding
the RW model into a DCM to show that auditory to visual connectivity
changed significantly over time as a function of prediction error. Thus,
consistent with predictive coding models of perception, associative
learning is mediated by prediction-error dependent changes in connectivity.
These results posit a dual role for prediction-error in encoding
surprise and driving associative plasticity
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
Timescales for the growth of sediment diapirs in subduction zones
Author Posting. © The Author(s), 2012. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 190 (2012): 1361–1377, doi:10.1111/j.1365-246X.2012.05565.x.In this study, we calculate timescales for the growth of gravitational instabilities forming in the sediment layer on the downgoing slab at subduction zones. Subducted metasediments are buoyant with respect to the overlying mantle and may form diapirs that detach from the slab and rise upwards into the mantle wedge. We use a particle-in-cell, finite-difference method to calculate growth rates for instabilities forming within a buoyant, wet-quartz metasediment layer underlying a dense mantle half-space composed of wet olivine. These growth rates are used to determine where sediment diapirs initiate and detach from the slab over a range of subduction zone thermal structures. We find that, given a sufficient layer thickness (200–800 m, depending on slab-surface and mantle-wedge temperatures), sediment diapirs begin to grow rapidly at depths of ∼80 km and detach from the slab within 1–3 Myr at temperatures ≤900 °C and at depths roughly corresponding to the location of the slab beneath the arc. Diapir growth is most sensitive to absolute slab temperature, however it is also affected by the viscosity ratio between the sediment layer and the mantle wedge and the length-scale over which viscosity decays above the slab. These secondary affects are most pronounced in colder subduction systems with old slabs and faster subduction rates. For a broad range of subduction zone thermal conditions, we find that diapirs can efficiently transport sediments into the mantle wedge, where they would melt and be incorporated into arc magmas. Thus, we conclude that sediment diapirism is a common feature of many subduction zones, providing a potential explanation for the ‘sediment signature’ in the chemistry of arc magmas.This work was supported by NSF Grant EAR-0652707
and a WHOI Deep Ocean Exploration Institute Fellowship to MB
Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights
BACKGROUND: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology.
OBJECTIVE: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data.
DESIGN, SETTING, AND PARTICIPANTS: Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking.
RESULTS AND LIMITATIONS: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p \u3c 5 × 10
CONCLUSIONS: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer.
PATIENT SUMMARY: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer
Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry
Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1
7 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19
7 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3
7 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P 64 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …