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Abstract
Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with
bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide
polymorphisms (SNPs) that hadnot achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656,
rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies
that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs
achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the
MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyseswere performed in these two regions for a subset of
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5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In
contrast, we detected two signals in the 20p12.2 region—the first signal ismarked by rs6104690, and the second signal ismarked
by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is
more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage)
bladder cancer (case–case P≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological
mechanisms underlying these novel genetic associations with risk for bladder cancer.

Introduction
Each year ∼380 000 bladder cancer cases are diagnosed world-
wide (1,2).While smoking is estimated to explain∼50%of bladder
cancer, genetic susceptibility has also been noted to contribute to
its etiology (2–4). Family history of bladder cancer in a first degree
relative is associated with a ∼1.7-fold increased risk, comparable
with many other common adult cancers (e.g. breast, prostate,
colon) (5,6). To date, candidate gene andgenome-wide association
studies (GWAS) have identified 15 genomic regions that harbor
bladder cancer genetic susceptibility variants. These include
1p13.3 (GSTM1), 2q37.1 (UGT1A cluster), 3q26.2 (TERC), 3q28
(TP63), 4p16.3 (TMEM129 and TACC3-FGFR3), 5p15.33 (TERT-
CLPTM1L), 8p22 (NAT2), 8q24.21, 8q24.3 (PSCA), 11p15.5 (LSP1),
15q24 (CYP1A2), 18q12.3 (SLC14A1), 19q12 (CCNE1), 20p12.2 and
22q13.1 (CBX6, APOBEC3A) (7–19). Based on analysis of the
reported signals that reached a conclusive threshold of genome-
wide significance (20), we estimate thatmany additional common
genetic variants for bladder cancer are yet to be discovered (11).

To identify new bladder cancer susceptibility variants, we
followed up on four promising SNPs (P < 1 × 10−6) that did not
achieve genome-wide significance in our previously reported
meta-analysis of three independently published GWAS per-
formed in individuals of European ancestry [National Cancer In-
stitute (NCI)-GWAS1, NCI-GWAS2 and the Texas Bladder Cancer
Study (TXBCS)-GWAS] (11,12,19). In addition, we genotyped five
promising SNPs identified in a genome-wide interaction study
of smoking and bladder cancer risk (21).

Results
In our previousmeta-analysis of three bladder cancer GWAS: NCI-
GWAS1 (8,11), NCI-GWAS2 (19) and TXBCS-GWAS (12) totaling 6911
cases and 11 814 controls of European descent, we identified four
SNPs with promising associations of P < 1 × 10−6 (19). These SNPs
were genotyped in an independent set of samples (4427 cases
and 5881 controls) with individual TaqMan assays. We also ob-
tained genotype data from existing GWAS data for 1724 cases
and 265 722 controls from Iceland and 1996 cases and 2853 con-
trols from the Netherlands (9,22) (see the Material and Methods
section). Details of the studies and the genotyping data are sum-
marized in Supplementary Material, Table S1. In a combined
meta-analysis, two of the four promising SNPs achieved the
threshold of genome-wide significance: rs4907479 at 13q34 (P = 3.3
× 10−10) and rs6104690 at 20p12.2 (P = 2.19 × 10−11). Study-specific
estimates are shown in Figure 1. Two other promising SNPs
rs4510656 and rs5003154 did not achieve genome-wide signifi-
cance with additional data (Supplementary Material, Fig. S1).

We also evaluated five SNPs identified as suggestive in a gen-
ome-wide scan for interaction of smoking and bladder cancer
risk (21). The most promising initial signals were rs1711973
(FOXF2) at 6p25.3 in never-smokers (P = 5.18 × 10−7, OR = 1.34)
and rs12216499 (RSPH3-TAGAP-EZR) at 6q25.3 in ever-smokers
(P = 6.35 × 10−7, OR = 0.75) (21). However, the current analysis in
an additional set of almost 1000 never-smokers and 3000 ever-
smokers did not provide supportive evidence for association of

these variants with bladder cancer risk (Supplementary Material,
Table S2).

To further refine the association signals with bladder cancer
risk, we imputed the 13q34 and 20p12.2 regions in a subset of
5551 bladder cancer cases and 10 242 controls from NCI-GWAS1
andNCI-GWAS2. Imputationwas donewithin 1Mbwindows cen-
tered on the GWAS markers and using the 1000 Genomes refer-
ence panel (Phase 3 October 2014). For the 13q34 region, we
analyzed 1370 imputed and 146 genotypedmarkers (Supplemen-
tary Material, Table S3). Among the 1516 markers evaluated, we
identified 29 additional SNPs in high linkage disequilibrium
(LD, r2 > 0.8) with rs4907479 and associated with bladder cancer
risk (P < 2.0 × 10−4). These variants are locatedwithin a 24 Kb gen-
omic region, in the first two introns of the MCF2L gene (Fig. 2).
Fine-mapping analysis showed that these variants are highly
correlated and analyses adjusting for the GWAS SNP (rs4907479)
did not reveal an independent signal, thus pointing toward a sin-
gle susceptibility locus marked by rs4907479 (P = 1.92 × 10−5,
OR = 1.13).

Since bladder cancer risk variants at 20p12.2 have previously
been reported (18,19), we sought to confirm and clarify these pre-
vious associations and determine if additional signals were pre-
sent. After analysis of 2344 imputed and 246 genotyped markers
across the 20p12.2 region, we observed three markers with com-
parably strong signals: rs6104690 (P = 3.97 × 10−5, OR = 1.11),
rs6108803 (P = 1.82 × 10−6, OR = 1.18) and rs62185668 (P = 1.39 ×
10−5, OR = 1.14, Table 1, Fig. 3 and Supplementary Material, Ta-
ble S4). Per-allele odds ratio (OR) estimates adjusting for the vari-
ous 20p12.2 marker combinations are presented in Table 1.
Regardless of the models, rs6104690 and rs6108803 showed sig-
nificant associations with bladder cancer risk (P ≤ 0.03), while
the association for rs62185668 was no longer significant (P = 0.25)
when adjusting for the newly identified 20p12.2 SNP rs6108803.
Logisticmodels that adjusted for the effects of two othermarkers
showed significant residual associations for rs6104690 (P = 0.03,
OR = 1.07) and rs6108803 (P = 0.03, OR = 1.12), but not rs62185668
(P = 0.70, OR = 1.02) (Table 1).We observed only aweak association
(OR = 1.07, 1.02–1.13; P = 1.00 × 10−2, Fig. 3) with bladder cancer
risk for the previously reported rs4813953 (18). Haplotype ana-
lysis at 20p12.2 showed the strongest associations with bladder
cancer risk when at least two risk alleles were present (P≤ 4.10 ×
10−6). We observed the most significant association with bladder
cancer risk for the combination of rs6104690 and rs6108803; a
haplotype with risk alleles of both markers had an OR = 1.21, P =
2.00 × 10−7 (Supplementary Material, Table S5). Further analysis
in the same set of samples showed that the presence of risk al-
leles of all three SNPs did not improve the association (OR = 1.20,
P = 5.00 × 10−7) above what was seen in the two-SNP haplotype
analysis (Supplementary Material, Table S6), implying that the
bladder cancer association signal in the 20p12.2 region could be
efficiently captured by genotyping two markers, rs6104690 and
rs6108803.

Analysis by tumor stage and grade (Table 2 and Supplemen-
tary Material, Table S7) did not show significant associations
with tumor characteristics for the 13q34 signal rs4907479. For
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Figure 1. Forest plots of meta-analyses results with bladder cancer risk for SNPs rs6104690 at 20p12.2 and rs4907479 at 13q34. Metaplots for SNPs rs6104690 at 20p12.2 (A)
and rs4907479 at 13q34 (B). Details of individual studies are presented in Supplementary Material, Table S1. The New England Bladder Cancer Study (NEBCS) represents a

single study comprised of Maine (ME) and Vermont (VT) components genotyped in NCI-GWAS1, and the New Hampshire (NH) component genotyped in NCI-GWAS2.

Fixed-effects meta-analysis by study was used to calculate the combined OR, 95% CI and P-trend for the variant allele.
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the 20p12.2 SNPs rs6108803 and rs62185668, the signal was stron-
ger formuscle-invasive bladder cancer (MIBC, T2–T4 stages) com-
pared with non-muscle-invasive bladder cancer (NMIBC, stages
Ta and T1, case–case analysis, P ≤ 0.02 for both markers), while
there was no statistically significant difference for rs6104690.
Case–case analysis adjusting for the 20p12.2 variants showed
stronger association with MIBC for rs6108803 and rs62185668,
which was not significantly affected by further adjustment
for rs6104690 (Supplementary Material, Table S8). Association
with tumor stage was consistent across studies (I2 = 0.0, P = 0.49
for rs6108803, Supplementary Material, Fig. S2). SNPs in the
20p12.2 region were not significantly associated with tumor
grade (P > 0.56) or high/low risk of progression tumor classifica-
tion (P > 0.52, low risk defined as Ta stage with G1/G2 grade;
high risk as T1–T4 or G3/G4 grade).

We analyzed the bladder cancer dataset containing data on
412 cases of The Cancer Genome Atlas (TCGA) (24), of which

391had germline genetic data, to explore possiblemolecular phe-
notypes that might be related to the 13q34 and 20p12.2 signals.
Since the SNPs of interest were not genotyped by TCGA, we
used proxies for these variants based on European populations
of the 1000 Genomes Project (Materials and Methods). We evalu-
atedMCF2LmRNAexpression in 375 bladder tumors in relation to
rs2993291 (proxy for rs4907479, r2 = 0.96) but observed no signifi-
cant association (Supplementary Material, Fig. S3). The three
SNPs at 20p12.2 (rs6104690, rs62185668 and rs6108803) are lo-
cated within a 33 Kb region in a 1.2 Mb gene desert, at a distance
of ∼335 and 880 Kb from the closest genes, JAG1 and BTBD3, re-
spectively (Fig. 3). There are 6 proxy SNPs that are highly corre-
lated (r2 > 0.8) with rs6104690; 30 proxy SNPs for rs62185668;
while there are no proxies for rs6108803 (only 4 SNPs are in r2 >
0.6). For the TCGA analysis, we used rs6040291 as a proxy for
rs6104690 (r2 = 1.0), rs6074214 as a proxy for rs62185668 (r2 = 0.97),
while we could not perform analysis specifically for rs6108803

Figure 2. Association results and LD plot for the 13q34 region. The −log10(P-value) (left Y-axis) for NCI-GWAS1 and NCI-GWAS2 genotyped SNPs (blue) and imputed SNPs

(gray) plotted on the genomic coordinates (X axis; NCBI genome build 37). The combined data for NCI-GWAS1, NCI-GWAS2, TXBCS-GWAS, IBCS-GWAS, NBCS-GWAS and

TaqMan study data for the 13q34 locus marked by SNP rs4907479, are shown in red. Right Y-axis presents LR of putative recombination hotspots based on 5 sets of 100

randomly selected controls from NCI-GWAS1 and NCI-GWAS2 and shown as connected blue lines.
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(the best proxy for rs6108803 in TCGA was rs6074214 with r2 =
0.45, this variantwas already analyzed as a proxy for rs62185668).

Expression of the closest genes, JAG1 and BTBD3, was not as-
sociated with genotypes of these SNPs in 381 bladder tumors
(Supplementary Material, Fig. S3A and B). Further, using TCGA
bladder cancer data, we observed no evidence of associations
for the proxy 13q34 and 20p12.2 markers with overall survival
for 363 patients and bladder cancer recurrence for 250 patients
(data not shown). Analysis of TCGA data through the CBio
Cancer Genomics Portal (25,26) showed thatMCF2Lwas not com-
monly mutated in bladder cancer. Based on tumor data from 412
patients, somatic alterations in MCF2L were detected only in 16
(4%) of all tumors, and gene amplifications represented most of
these alterations (14 of 16 events).

Weperformed in silico annotation using ENCODE (27) andHap-
loReg (28) databases, compiling information on histonemodifica-
tionmarks in cell lines, transcription factor (TF) binding sites and
DNase hypersensitivity sites (DHS). We noted from these data
that the 13q34 region contains two regions with enrichment of
multiple functional marks suggestive of regulatory functions
close to SNPs in high LD with the GWAS SNP rs4907479. Import-
antly, these two functional regions also showed DHS in an ur-
othelial cell line (Supplementary Material, Fig. S3). Future work
will explore these regions for their possible role in regulating
MCF2L or other genes. Similar analysis for the 20p12.2 region
showed enrichment of multiple functional signals close to
rs6104690 and several other areas butwithout strong specific pat-
terns (Supplementary Material, Fig. S4). Since the SNPmarkers at
20p12.2 region associated with bladder cancer risk map to a gene
desert area, more work is needed to explore possible functional
effects of genetic variants associated with bladder cancer.

The 20p12.2 and 13q34 regions also harbor markers asso-
ciated with other phenotypes identified by published GWAS.
SNP rs11842874 in the MCF2L gene at 13q34 was previously iden-
tified in aGWAS forosteoarthritis (29), but this variantwasnot as-
sociated with bladder cancer risk (P = 0.67, r2 = 0.01 and D′ = 0.24
with rs4907479, Supplementary Material, Table S3). A 20p12.2 re-
gion SNP rs1327235, which was previously associated with blood
pressure (23), showed a nominal association with bladder cancer
risk in our set (OR = 1.09, P = 3.8 × 10−4, r2 = 0.25–0.41 with our best
markers) (Fig. 3); there was no association for the bone density-
associated SNPs rs3790160 and rs2273061 (30,31) (P > 0.10,
r2 < 0.01 with our best markers).

We have previously shown evidence for significant additive in-
teractions with smoking for many bladder cancer susceptibility

loci (15,19,32). Therewas a suggestion of an additive but notmulti-
plicative interaction for the rs6108803 20p12.2 SNP and smoking
(P-additive interaction = 0.04, P-multiplicative interaction = 0.66).
All other SNPs did not show any evidence of interaction (P≥ 0.28)
(data not shown).

We also estimated the proportion of familial risk explained,
based on all genetic variants identified to date that show associ-
ation with bladder cancer at a genome-wide significant level. We
estimate that all significantly associated SNPs identified so far
explain ∼12% of familial risk for bladder cancer (33,34).

Discussion
Herein, we report a new bladder cancer susceptibility locus at
13q34 marked by rs4907479 (P = 6.4 × 10−10) and refine the previ-
ously reported 20p12.2 region as a multi-signal locus, with two
associations, one marked by rs6104690 and a second marked by
rs6108803 and rs62185668. Interestingly, the signal captured by
rs6108803 and rs62185668 showed significantly stronger associ-
ation with risk of MIBC compared with NMIBC, making this the
first bladder GWAS signal to show a significantly stronger associ-
ation with MIBC.

Fine-mapping analysis of the 13q24 region showed that the
signal detected for rs4907479 can be represented by at least 29
correlated variants (r2 ≥ 0.8), all located within the first two in-
trons of the MCF2L gene. The association signal for rs4907479
was similar in groups stratified by tumor stage and grade.
MCF2L is a guanine nucleotide exchange factor (GEF) for mem-
bers of the RHO subfamily of the RAS superfamily (35). The N-ter-
minally truncated protein isoform of MCF2L was initially
identified as an osteosarcoma oncogene (36). In support of the
possible role of this gene in bone disease, an MCF2L genetic vari-
ant rs11842874 has been strongly associated in GWAS for osteo-
arthritis in Europeans, but this variant was not associated with
bladder cancer in our study.MCF2Lwas not found to be common-
lymutated in bladder tumors studied in TCGA (25). The function-
al role of this GWAS signal is unclear since it was not associated
with mRNA expression of MCF2L, overall survival or bladder
cancer recurrence in TCGA bladder cancer dataset. ENCODE and
HaploReg (27,28) in silico analysis suggest that this region may be
important for regulation of genes in the region given enrichment
of DHS; hence, future work is needed to explore the molecular
phenotype of this genetic association and its role in bladder
cancer risk.

Table 1. Per-allele ORs and 95% CIs for SNPs at 20p12.2 locus with significant associations with bladder cancer risk in the combined NCI-GWAS1
and NCI-GWAS2 dataset of 5551 bladder cancer cases and 10 242 controls

SNPa Alleles, risk-
underlined

RAF cases/
controls, %

OR (95% CI) OR (95% CI),
adjusted for
rs6108803

OR (95% CI),
adjusted for
rs62185668

OR (95% CI),
adjusted for
rs6104690

OR (95% CI), adjusted
for rs6104690,
rs62185668, and
rs6108803

rs6108803(G) G/A 18.2/16.1 1.18 (1.10–1.26)
P = 1.82E− 06

– 1.12 (1.02–1.24)
P = 0.02

1.14 (1.06–1.22)/
P = 6.41E − 04

1.12 (1.01–1.24)
P = 0.03

rs62185668 (I, G) A/C 27.1/24.5 1.14 (1.07–1.20)
P = 1.39E− 05

1.05 (0.97–1.15)
P = 0.25

– 1.09 (1.02–1.17)
P = 9.26E − 03

1.02 (0.93–1.12)
P = 0.70

rs6104690 (G) A/G 59.1/55.9 1.11 (1.06–1.17)
P = 3.97E− 05

1.07 (1.01–1.13)
P = 0.02

1.07 (1.01–1.14)
P = 0.03

– 1.07 (1.01–1.13)
P = 0.03

aG indicates SNPs genotyped by GWAS and validated by TaqMan genotyping in a subset of samples; (I, G) indicates a SNP imputedwith high confidence and then validated

by TaqMan genotyping in a subset of samples. All ORs and 95% CIs were adjusted for age, gender, study groups, significant eigenvectors and smoking status; analysis is

based on samples with genotype data for all three SNPs.

RAF, risk allele frequency.
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In follow-up analyses, we defined the 20p12.2 region as a
multi-signal locus, which includes at least two signals, the first
signal represented by our initial SNP rs6104690 (19) and nowa se-
cond signalmarked by a novel SNP rs6108803 and a previously re-
ported rs62185668 (18). A combination of twomarkers, rs6104690
and rs6108803 representing each of these 20p12.2 signals, most

efficiently captured the bladder cancer association in this region
in our combined dataset of NCI-GWAS1 and NCI-GWAS2. How-
ever, only the second signal, rs6108803/rs62185668 but not
rs6104690, was associated with advanced tumor stage (MIBC).

A previously identified SNP rs7257330 upstream of CCNE1
gene in 19q12 region showed an association with aggressive

Figure 3. Fine-mapping association analysis of the 20p12.2 region. The results are shown for five SNPs of interest: validated GWAS candidate rs6104690 (19), novel finding

rs6108803, previously reported rs62185668 and rs4813953 associated with bladder cancer (18), and rs1327235 associated with systolic blood pressure (23). The plots are

based on the combined NCI-GWAS1 and NCI-GWAS2 dataset, which includes 5551 bladder cancer cases and 10 242 controls of European origin. (A) Association results

for bladder cancer risk (Y-axis) are presented as −log10(P-value) for logistic regression models, assuming additive genetic effect and adjusting for age, gender, 11 study

groups, significant eigenvectors, smoking (ever/never) and specified SNPs. SNPs of interest aremarked as filled diamonds: rs6104690 (red), rs6108803 (brown), rs62185668

(green), rs4813953 (blue) and rs1327235 (orange); corresponding proxy SNPs (r2≥ 0.8) are presented as color-matched, un-filled diamonds. (B) Pairwise LD (r2 andD′) of SNPs

of interest across the 33 Kb in the 20p12.2 region.
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disease, which is based on a combination of tumor stage and
grade information and corresponds to high risk of progression
definition used here, but this was mostly driven by high grade
(37). The 20p12.2 markers capture another important clinical dif-
ference, by tumor stage, an association with MIBC. However, our
study and a previous study that analyzed rs62185668 (18) showed
no difference in association for these markers by tumor grade or
by low/high risk of cancer progression.MIBC represents up to 20%
of all bladder cancer cases; this is a clinically severe cancer sub-
type that requires radical cystectomy and systemic chemother-
apy. The risk of developing life-threatening metastatic disease
remains high even after this treatment, resulting in relative
5-year survival rate of 15–63%, compared with 88–98% for
NMIBC (http://www.cancer.org/cancer/bladdercancer/detailed
guide/bladder-cancer-survival-rates). If validated in additional
samples, associations at the 20p12.2 regionmight lead to a better
understanding of genetic predisposition to MIBC. The associated
20p12.2 SNPs are located in a 1.2 Mb gene desert; expression of
the closest genes JAG1 and BTBD3 was not associated with
these variants in TCGA bladder cancer dataset, and alternative
functional mechanisms will be explored.

Wewere unable to confirmassociations forfive loci previously
identified as suggestive in a genome-wide interaction study of
smoking and bladder cancer risk (21). These results indicate
that additional large sample sets will be needed to explore loci
with differential effects by smoking status.

In conclusion, we have identified a new susceptibility locus at
13q34 and refined our understanding of 20p12.2 as amulti-signal
locus associated with bladder cancer risk in Europeans. Based on
fine-mapping, we have identified optimal variants associated
with bladder cancer risk that can be pursued in future studies.
Comprehensive identification of the full range of bladder cancer
susceptibility variants will provide a basis to further our under-
standing of the underlying biologic mechanisms and to explore
the complex interplay of genes and environmental and occupa-
tional exposures (38) that contribute to bladder cancer risk.

Materials and Methods
Study participants

The samples and studies used are listed in SupplementaryMater-
ial, Table S1. Cases and controls were non-Hispanic Caucasians
of European ancestry. Cases were defined as histologically con-
firmed primary carcinoma of the urinary bladder including

carcinoma in situ (ICD-0-2 topography codes C67.0–C67.9 or
ICD9 codes 188.1–188.9). Each study obtained informed consent
from study participants and approval from the corresponding In-
stitutional Review Boards (IRB). Studies obtained institutional
certification permitting data sharing in accordance with the
NIH Policy for Sharing of Data Obtained in NIH Supported or
Conducted Genome-Wide Association Studies (GWAS).

Genotyping and quality control

Genotyping of cases and controls for NCI-GWAS1 and NCI-
GWAS2 has previously been described (11,19) (Supplementary
Material, Table S1). Genome-wide single-nucleotide variants
(SNV) data for the first set of NBCS cases and controls were gen-
erated using the Illumina HumanHapCNV370-Duo (v1) or Illumi-
na HumanHapCNV370-Quad (v3) BeadChip. A total of 1819
controls and 1601 bladder cancer patients passed pre-imputation
QC (European ancestry, sample yield ≥96%, no gender mismatch,
no duplicates). A second series of 1034 controls and 395 patients
were successfully genotyped using the Illumina HumanOmniEx-
press-12 v1.1 BeadChip.

SNPs that hadsuggestive interactionwith smoking (rs17621407,
rs12216499, rs948798, rs846906 and rs1711973) (21) were genotyped
with optimized TaqMan genotyping assays (ABI, Foster City, CA,
USA) in eight additional studies fromEurope and the United States
(Supplementary Material, Table S1). Validation of imputed SNPs
rs4813953 and rs62185668 and GWAS array genotyped SNPs
rs61088036 and rs4907479 was done by TaqMan genotyping of
683 randomly selected DNA NCI-GWAS study samples represent-
ing cases and controls, with concordance rates of 99.4, 99.2, 100
and 99.7%, respectively. For the rs6104690 SNPat 20p12.2, compari-
sonof the genotypes from theGWASscanwithTaqManassays has
been previously reported (19) and showed 100% concordance.

Imputation

IMPUTE version 2 (39) was used to infer additional genotypes in
the 13q34 and 20p12.2 regions using genotype data for 5942
cases and 10 861 (whom we had individual-level genotype data
on) from the combined dataset of bladder cancer NCI-GWAS1
and NCI-GWAS2 (11,19), and the 1000 Genomes Project Phase 3
integrated haplotypes (NCBI build 37 October 2014), which con-
tains data for 2504 individuals from 21 populations (40). A 1 Mb
window centered on SNPs rs4907479 at 13q34 or rs6104690 at
20p12.2 was used for imputation with a seed of 146 and 246

Table 2. Per-allele ORs and 95% CIs for SNPs in the 20p12.2 region (rs6104690, rs6108803 and rs62185668) in the combined NCI-GWAS1 and
NCI-GWAS2 dataset stratified by tumor stage as non-muscle-invasive (NMIBC, Ta-T1) and muscle-invasive (MIBC, T2-T4) bladder cancers

SNP Controls Cases OR Case–control Case–Case
95% CI P P

rs6104690 Stage at diagnosis
NMIBC (Ta-T1) 8403 3008 1.10 1.03 1.18 5.27E−03 Ref
MIBC (T2-T4) 539 1.22 1.07 1.39 3.88E−03 0.20

rs6108803 Stage at diagnosis
NMIBC (Ta-T1) 7585 3010 1.10 1.01 1.21 3.33E−02 Ref
MIBC (T2-T4) 539 1.36 1.15 1.60 2.62E−04 0.02

rs62185668 Stage at diagnosis
NMIBC (Ta-T1) 7966 2860 1.13 1.04 1.22 2.93E−03 Ref
MIBC (T2-T4) 503 1.39 1.20 1.60 1.28E−05 0.01

Risk alleles are A (rs6104690), G (rs6108803) and A (rs62185668). Polytomous logistic regression was used to obtain OR and 95% CI for tumor subtypes adjusted for age,

gender, study groups, significant eigenvectors and smoking status. Case–case P values were calculated with tumor type as an outcome and were used to test for

differences in effect size between NMIBC and MIBC.
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GWAS-genotyped SNPs, respectively. Imputation quality control
included an assessment of overall concordance, which indicates
how well the genotyped SNPs were imputed across samples
(we used a threshold of 0.95), the average posterior probability
and the IMPUTE2-info score of individual SNPs, which indicate
how well individual SNPs were imputed across a dataset (we
used a threshold of 0.9). This resulted in an overall genotype con-
cordance score of 95% and a final SNP count of 1372 for the 13q34
region and an overall concordance of 97% with a final SNP count
of 2344 for the 20p12.2 region.We calculated theHardy–Weinberg
equilibrium (HWE) and minor allele frequencies (MAF) in PLINK
version 1.07 (10 August 2009), and variants with strong HWE de-
viations in controls (P < 10−3) were reviewed and flagged. GTOOL
software was used for all file conversions between pedigree and
genotype file format.

Association testing on the combined NCI-GWAS1 and NCI-
GWAS2 datasets that included both genotyped and imputed var-
iants was performed using PLINK version 1.07 (10 August 2009)
based on logistic regressionmodels, considering an additive gen-
etic effect and adjusting for age (in 5-year categories), gender, 11
study groups, significant eigenvectors (EV 1, 5 and 6) from the
principal component analysis (PCA) as previously described
(11,19) and smoking (ever/never). Additionally, models were ad-
justed for the specific SNPs to test for the presence of any add-
itional independently or stronger associated SNPs. Calculation
of LD metrics (D′ and r2) and haplotype analysis for 20p12.2
locus SNPs (rs62185668, rs6104690 and rs6108803) were per-
formed using PLINK.

Fixed-effects meta-analyses were used to determine associa-
tions for the SNPs in different sub-studies overall and in selected
strata (tumor stage and grade) using STATA, Version 11.2. Hetero-
geneity in genetic effects across study groups was evaluated
using the I2 statistic. We evaluated SNP associations by stage,
grade and high/low risk of progression tumors (low-risk tumors
were defined as Ta stage with G1/G2 grade; high-risk tumors
were T1–T4 stages or G3/G4 grade) using the combined set of
NCI-GWAS1 andNCI-GWAS2 data. Polytomous logistic regression
was used to obtain OR and 95% confidence interval (CI) for differ-
ent tumor subtypes. Case–case P-values were calculated with
tumor type as an outcome and were used to test for differences
in effect size across subtypes. Polytomous logistic regression
models for tumor grade and stage constraining the effect size
to increase linearly across levels were also calculated and pre-
sented as case–case trend. Additive and multiplicative interac-
tions were conducted using categorical variables (each SNP was
coded as a dichotomous variable indicating the presence of any
risk allele) to make the additive andmultiplicative tests compar-
able as previously described (15,32).

Estimate of recombination hotspots

SequenceLDhot (41) that uses an approximate marginal likeli-
hood method (42) was used to compute likelihood ratio (LR) sta-
tistics for a set of putative hotspots across the region of interest.
We sequentially analyzed subsets of 100 controls of European
background (by pooling 5 controls from each study). We used
Phasev2.1 to infer the haplotypes as well as background recom-
bination rates. The analysiswas repeatedwith 5 non-overlapping
sets of 100 pooled controls.

TCGA analysis

Expression (RNA-seq), genotypes (Affymetrix SNP6.0 arrays) and
demographic and clinical data were obtained from TCGA (24)

from 412 bladder cancer cases. Among the 412 cases, 391 had
germline genotype data, 363 cases had data on overall survival
and 250 cases had data on recurrence. Distributions of genotypes
of SNPs rs2993291, rs6040291 and rs6074214, which were used as
proxies for GWAS SNPs, were in HWE and comparable with the
patterns in the 1000 Genomes populations. Total gene expression
values for JAG1, BTBD3 and MCF2L generated by TCGA as RSEM
countswere log10-transformed (first adding 1 to all RSEMvalues).
The log-transformed RSEM values were tested for association
with SNPs based on an additive genetic model adjusted for age,
sex and race using generalized linear models in SPSS v.21.

Survival analysis was performed using clinical and genotype
bladder cancer TCGAdata (24). Overall survival data defined as ei-
ther months until patient death or last follow-up. Hazards ratios
(HR) were estimated using Cox regression models with the num-
ber of risk alleles (0, 1 or 2) as the independent variable and over-
all survival as the outcome adjusting for age, gender, race and
smoking status (ever/never).

Data access

Access to the NCI-GWAS1 and NCI-GWAS2 genotypes is available
for investigators from certified scientific institutions after
approval of a submitted Data Access Request through dbGAP
identifier, phs000346.v2, at http://www.ncbi.nlm.nih.gov/gap.

URLs

CGEMS portal, http://cgems.cancer.gov/; Cancer Genomics Re-
search Laboratory, CGR, http://cgf.nci.nih.gov/; GLU, http://code.
google.com/p/glu-genetics/; EIGENSTRAT, http://genepath.med.
harvard.edu/~reich/EIGENSTRAT.htm; STRUCTURE, http://pritch.
bsd.uchicago.edu/structure.html; 1000 Genomes, http://www.
1000genomes.org/; TCGA, http://cancergenome.nih.gov/; UCSC,
https://genome.ucsc.edu/; STATA, http://www.stata.com; ; dbGAP,
http://www.ncbi.nlm.nih.gov/gap; TCGA Research Network,
http://cancergenome.nih.gov, ENCODE, https://genome.ucsc.
edu/ENCODE/; HaploReg V.3, http://www.broadinstitute.org/
mammals/haploreg/haploreg.php.

Supplementary Material
Supplementary material is available at HMG online.
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