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Abstract

We conducted a multi-stage, genome-wide association study (GWAS) of bladder cancer with a
primary scan of 589,299 single nucleotide polymorphisms (SNPs) in 3,532 cases and 5,120
controls of European descent (5 studies) followed by a replication strategy, which included 8,381
cases and 48,275 controls (16 studies). In a combined analysis, we identified three new regions
associated with bladder cancer on chromosomes 22g13.1, 19912 and 2937.1; rs1014971,
(P=8x10712) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P=2x10711) on
1912 maps to CCNEZ; and rs11892031 (P=1x107") maps to the UG T1A cluster on 2¢37.1. We
confirmed four previous GWAS associations on chromosomes 3028, 4p16.3, 8q24.21 and 8q24.3,
validated previous candidate associations for the GSTM!I deletion (P=4x10711) and a tag SNP for
NATZ acetylation status (P=4x10711), as well as demonstrated smoking interactions with both
regions. Our findings on common variants associated with bladder cancer risk should provide new
insights into mechanisms of carcinogenesis.

Bladder cancer is the fourth most common incident cancer in menl and its frequent
recurrence requires regular screening and interventions. Cigarette smoking and occupational
exposure to aromatic amines have been strongly linked to bladder cancer risk.1 A family
history of bladder cancer is associated with an approximately two-fold increase in risk;
however, multiple-cancer families are rare and no high-penetrance genes have been
identified to date2”4. Large meta-analyses of candidate gene studies have provided support
for associations between NAT2 slow acetylation phenotype5 (defined by AM/A 72 haplotypes)
and a common gene deletion of GSTM16 with bladder cancer risk7:8. Further, gene-
environment interactions have been shown for smoking and AV/A 72 acetylation, with an
increased risk in slow acetylators, apparent only among cigarette smokers7-8.

Previous genome-wide association studies (GWAS) in bladder cancer have identified
common variants in four genomic regions on chromosomes 39289 (7P63), 4p16.3
(TMEM129, TACC3-FGFR3)10, 8924.219, and 8724.311 (PSCA) that are associated with
risk. Interestingly, the variants on 8q24.21 map to a region centromeric to MYCthat has
been identified in GWAS of breast, colorectal and prostate cancers, as well as chronic
lymphocytic leukemial2°18. Also, in follow-up analyses, an association with bladder cancer
risk has been suggested for variants near the 7TER7-CLPTMIL locus on chromosome
5p15.33, which has also been associated by GWAS with risk for basal cell carcinoma,
cutaneous melanoma, lung, brain and pancreatic cancers19723. However, the previously
reported association with bladder cancer did not achieve genome-wide significance.

We conducted a multi-stage GWAS involving 3,532 cases and 5,120 controls of self-
described European descent in stage |, and followed up the most notable signals in two
stages of replication (stages lla/b and 111) totaling 8,381 cases and 48,275 controls (Figure 1

Nat Genet. Author manuscript; available in PMC 2011 May 1.
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and Online Methods). Individuals with scan data in stage | were participants in two case-
control studies carried out in Spain and the USA (Maine and Vermont component of the
New England Bladder Cancer Study) and three prospective cohort studies in the USA and
Finland (see Supplementary Table 1 online for details). Replication analyses in stage 11 were
carried out using existing scan data from two earlier studies. First, we evaluated the 100
most significant SNPs (excluding previously reported loci and SNPs with pairwise r2>0.8)
in 969 cases and 957 controls from the Texas Bladder Cancer study in the USA (stage
l1a)11. Five of these SNPs were further evaluated in a second scan of 1,274 cases and 1,832
controls in The Netherlands (stage 11b)9. Three of the five SNPs were included or tagged at
a pair-wise r2>0.8 in the Dutch scan, and risk associations were confirmed for all three. In
stage 111, the three SNPs plus a tagging SNP for the M/A 72 acetylation status were evaluated
in 6,141 cases and 45,486 controls from 11 case-control and 3 prospective cohort studies in
the USA and Europe (see Figure 1 and Supplementary Table 1).

After quality control analysis of genotypes, we combined the data sets in stage I resulting in
589,299 SNPs available for analysis (based on the common SNPs called from both the
[llumina Human1M and Human 610-Quad) in 3,532 cases and 5,120 controls (Online
Methods). A logistic regression model was fit for genotype trend effects (1 d.f.) adjusted for
study center, age, sex, smoking status (current, former or never) and DNA source (blood/
buccal). The quantile-quantile (Q-Q) plot showed little evidence for inflation of the test
statistics as compared to the expected distribution (corrected A.1qgg Subjects=1.021), which
minimizes the likelihood of substantial hidden population substructure or differential
genotype calling between cases and controls24 (Online M ethods and Supplementary
Figure 1). A Manhattan plot displays the results of the combined GWAS in stage |
(Supplementary Figure 2).

Data from the first stage confirm the associations reported with tag SNPs in the four
previously identified genomic regions on chromosomes 328 (rs710521)9, 8g24.21
(rs9642880)9, 8q24.3 (rs2294008)11 and 4p16.3 (rs798766)10 as well as a suggested region
in 5p15.33 (rs401681; a neighboring SNP, rs2736098, was also reported but data were not
available in our study)19 (Table 1 and Supplementary Figure 3). Consistent with prior
reports9:10, rs9642880 on 8g24.21 and rs798766 on 4p16.3 were most strongly associated
with tumors of low grade/low risk of progression (Supplementary Table 2). A stronger
association with low grade/low risk disease was also suggested for rs401681 on 5p15.33
(Supplementary Table 2). In addition, we used a copy number variation TagMan assay7 to
assess the presence of GSTMI on 1p13.3 to genotype stage | samples, and confirmed an
association with increased bladder cancer risk (Table 1).

In a combined analysis based on case/control counts by genotype and study, we estimated
odds ratios (ORs) using logistic regression analyses adjusted for study center. Meta-analyses
of estimated ORs adjusted for age, sex, smoking status and DNA source produced
comparable point estimates (Supplementary Table 3). Our combined analysis of stages I, 11
and 111 identified three novel genomic regions on chromosomes 22g13.1, 19g12 and 2g37.1
that were associated with bladder cancer risk below the threshold for genome-wide
significance (P<5 x 1077)25 (Table 2 and Supplementary Figure 4 for study and stage
specific estimates, Figure 2). We also confirmed a signal below genome-wide significance
for rs1495741, which tags the NAT2 acetylator status26 previously reported as a bladder
cancer susceptibility locus on 8p227:8. The new SNP is located approximately 10kb of the
3’ end of the gene.

The locus on chromosome 22q13.1, rs1014971 (Pyen~8.4%x10712; OR per C allele =0.88,
95%Cl 0.85-0.91)), was primarily associated with high-risk tumors (Supplementary Table
2). The locus is located in a non-genic region, approximately 25 kb centromeric of the
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catalytic polypeptide-like 3A (APOBEC3A) and 64 kb telomeric of the chromobox homolog
6 (CBX6). APOBEC3A is an apolipoprotein B mRNA editing enzyme that belongs to the
cytidine deaminase gene family, which can play a role in the initiation of tumorigenesis by
deamination of cytosine (C) to uracil (U)27. CBX6is a component of the chromatin —
associated polycomb complex involved in transcriptional repression.

In the combined analysis, we observed an association with rs8102137 on chromosome
190912 (Pyens=1.7x10711; OR per C allele =1.13, 95%Cl 1.09-1.17), which maps to the
cyclin E1 gene (CCNEI). CCNELL is a key member of the cyclin/cyclin-dependent kinase
(Cdk)/retinoblastoma protein (pRB) pathway which determines the rates of cell cycle
transition from G1 to S phase, and is commonly altered in bladder cancer and other
tumors28. Cyclin E1 expression in bladder cancer has been associated with high grade or
muscle invasive tumors and poor clinical outcome29. Consistently, rs8102137 was most
strongly associated with risk of high grade/high risk tumors (Supplementary Table 2).

A third locus is marked by rs11892031 (P=1.0x10""; OR per C allele =0.84, 95%Cl
0.79-0.89) on chromosome 2g37.1 and resides in an intronic region of the UDP-
glucuronosyltransferase (UGT) 1A gene locus, which encodes the UGT1A family of
proteins. Glucuronidation by UGTs facilitates solubility and removal of substrates such as
endo- and xenobiotics (including carcinogens in tobacco smoke) via bile or urine30. Genetic
variation in UGT1A has been associated with predisposition to severe gastrointestinal
toxicity of the anticancer drug irinotecan31. The UGT1A locus is represented by at least
nine highly homologous transcripts, collectively known as UGTS, generated by alternative
splicing. Tissue-specific loss or decreased expression of UGTs has been associated with
several gastrointestinal cancers and bladder cancer32°34, as well as experimentally induced
bladder cancer in animal models35.

Previously, a promising signal in the CLPTMIL-TERT locus on chromosome 5p15.33 was
reported in a region in which common variants have been associated with multiple cancers
in recent GWAS19723. In addition, rare mutations in 7ERT have been linked to dyskeratosis
congenita (a bone marrow failure syndrome), idiopathic pulmonary fibrosis, acute
myelogenous leukemia and chronic lymphocytic leukemia36-39. In the first stage of this
GWAS, we observed a moderately significant effect for rs401681 (P= 2.9 x 1073), which
was at genome-wide significance when combined with the Rafnar et al. data (P=5.0 x 1077;
OR per C allele 1.11, 95% CI 1.07-1.16) (Table 1, Supplementary Figure 3).

The risk associated with GSTM1 and NATZ2varied in strength across categories of cigarette
smoking, whereas genotype risk associations by smoking categories were of similar
magnitude for the eight susceptibility loci identified by GWAS (Supplementary Table 4). In
a combined analysis, the risk association with GSTMZ deletion was strongest in never
smokers (OR=1.75, 95%ClI=1.44-2.13), and progressively weaker in former (OR=1.55,
95%C1=1.35-1.78) and current smokers (OR=1.25, 95%CI =1.07-1.46; Pijnteraction = 0.008
for current vs. never smokers; Table 3). The stronger association of the GSTM1 deletion
among non-smokers is a novel observation that was not evident in previous case-only meta-
analyses?. rs1495741 located on the 3" end of NAT2is a marker of the NAT2 phenotype
associated with bladder cancer risk26. The rs1495741 GG genotype marking the slow
acetylation phenotype, compared to the combined AG/AA genotypes corresponding to the
intermediate/rapid acetylation phenotypes, showed a highly significant (P=5.5x1077)
association with increased bladder cancer risk that was limited to cigarette smokers
(OR=1.24, 95% CI=1.16-1.32 P=4.3x10711; Pjyteraction=6.3%107°) (Supplementary Figure 5
and Supplementary Table 3). This interaction is consistent with the role of MA72in the
detoxification of bladder carcinogens such as aromatic amines from tobacco smoke.

Nat Genet. Author manuscript; available in PMC 2011 May 1.
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Our three-stage study had adequate power to detect variants of moderate effect sizes over a
range of common allele frequencies. For the newly discovered SNP markers, the power to
detect the observed associations at a level of genome-wide significance was at 54%, 30%,
30% and 6% for rs104971, rs1495741, rs8102137 and rs11892031, respectively. In light of
the limited power to discover SNPs with modest effect sizes, additional loci with similar
effect sizes will likely be identified with larger scale GWAS. Based on a recent estimator40
that incorporates novel and previously reported loci together, we estimate that
approximately two dozen additional bladder cancer susceptibility SNP markers of similar
magnitude and frequencies might be discovered. Future studies should be powered with
adequate sample size to detect additional variants.

With the exception of the GSTM1 deletion, relative risk estimates for novel loci are based
on associations using tag SNPs, which most likely underestimate the association with
biologically important alleles. Accordingly, further studies are needed to define the
functional variants and the clinical utility of risk models that combine genetic markers with
epidemiologic risk factors for bladder cancer (i.e. smoking, occupational and environmental
exposures, family history). Our combined analysis of 12,254 individuals with bladder cancer
and 53,395 controls has uncovered three new genomic regions associated with bladder
cancer risk. Fine-mapping studies of these three regions are needed to identify candidate
variants for functional studies that should shed light into biological mechanisms for the
associations reported through GWAS. This knowledge could establish the foundation for
developing improved preventive, diagnostic and/or therapeutic approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Online Methods
Study Participants

Participants were drawn from 21 studies (Supplementary Table 1). For stage I, cases were
defined as histologically confirmed primary carcinoma of the urinary bladder including
carcinoma /n situ (ICD-0-2 topography codes C67.0-C67.9 or ICD9 codes 188.1-188.9).
Each participating study obtained informed consent from study participants and approval
from its Institutional Review Board (IRB) for this study. For stage | only, participating
studies obtained institutional certification permitting data sharing in accordance with the
NIH Policy for Sharing of Data Obtained in NIH Supported or Conducted Genome-Wide
Association Studies (GWAS).

Genotyping and Quality Control

For stage I, genome-wide genotyping was conducted using three chips, SBCS (HumanHap 1
Million), NEBC-ME/VT (Human Hap 610-Quad), ATBC, CPS-1l and PLCO (cases)
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(Human Hap 610) and controls from CGEMS/GEI for PLCO (Human Hap 550-r
equivalent). DNA samples were selected for genotyping based on pre-genotyping quality
control measures performed for GWAS at the Core Genotyping Facility of the NCI 4,089
blood samples and 2,813 buccal samples were analyzed. Repeat genotyping was performed
on 38 blood samples (19 cases and 19 controls) and 10 buccal samples (2 cases and 8
controls) on Illumina 1M chips after suitable metrics identified performance issues. Cancer
free controls (N=2003) were previously scanned in CGEMS18 and a lung cancer GWAS21.

Genotype clusters were estimated with samples by study with preliminary completion rates
greater than 98% per individual study (namely SBCS, NEBC-ME/VT, PLCO, ATBC and
CPS-11). Genotypes for the analytical build were based on study specific clustering. SNP
assays with locus call rates lower than 90% were excluded.

SNPs with extreme departures from Hardy-Weinberg proportions (P<1x10~') were
excluded from the association analysis due to the increased likelihood of spurious
associations due to problematic assays or genotyping calling.42 Additional participants were
excluded based on: 1) completion rates lower than 94-96% (n=203 samples); 2)
heterozygosity of less than 22% or >35% (n=12); 3) inter-study unexpected duplicates
(n=5); 4) phenotype exclusions (due to ineligibility or incomplete information) (n=94).

Assessment of population structure of study participants was performed with
STRUCTUREA43 by seeding the analysis with founder genotypes from three HapMap
populations (Phase I and 1l build 26).44 A set of 12,898 SNPs with extremely low pair-wise
correlation (r<0.004) was selected for this analysis.45747 A total of 55 participants (43
cases and 12 controls) were estimated to have less than 85% HapMap CEU admixture
(Supplementary Figure 6). Principal component analysis (PCA) of scanned subjects
(excluding inferred sib and half-sib pairs) was performed with GLU (a similar procedure to
EIGENSTRAT)45'46 and did not reveal notable eigenvectors. Consequently, a study-
specific indicator was used for the stage | analysis46.

We estimated the inflation of the test statistic, A, adjusted to a sample size of 1000 cases/
1000 controls as per the method of de Bakker et. al: A(corrected)= 1 + (A—1) X [Ncase * +
Neont 1]/[2x1073 1.48 The corrected estimated A1gqg is 1.021while the uncorrected A is
1.086 (Supplementary Figure 1).

Twenty participant pairs were identified as potential relatives based on genotyping sharing
in excess of theoretical expectations. A set of 4,546 SNPs were selected (with completion
rates >95%, MAF>0.3 and r2<0.01 in the three HapMap populations) and used to run
PREST49 to formally test for cryptic relatedness. 19 unexpected full-sib and 1 parent-child
pairs were identified and excluded from PCA (but included in the association analysis). 243
expected duplicates (including 6 triplicates in ATBC) were evaluated and yielded a
concordance rate of 99.99%.

The final participant count for stage | analysis was 3,532 cases and 5,120 controls
(Supplementary Table 1). The number of SNPs available for association analysis in all
studies but SBCS was 589,299. In the SBCS, genotyped with the Infinium HumanHap 1 M
chip, after quality control metrics were applied, 1,002,634 SNPs were available and 571,643
overlapped exactly with the 610Quad/550k data.

TagMan custom genotyping assays (ABI, Foster City, CA) were designed and optimized for
4 SNPs, including the tag SNP for NAT2. In an analysis of 1,107 samples from three
studies, the comparison of the Illumina calls with the TagMan assays showed an average
concordance rate of 99.4% (range 99.2-99.8%); no shifts from wild type to homozygotes
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were observed. The Illumina Infinium cluster plots for the four novel associations,
rs1014971, rs8102137, rs11892031 and rs1495741 are shown in Supplementary Figure 7.

Association Analysis

Association analyses for stage | were conducted using logistic regression, adjusted for age
(in five-year categories), sex, smoking (current, former or never), DNA source (buccal/
blood) and study. Each SNP genotype was coded as a count of minor alleles, with the
exception of X-linked SNPs among men that were coded as 2 if the participant carried the
minor allele and 0 if he carried the major allele.50 A score test with one degree of freedom
was performed on all genetic parameters in each model to determine statistical significance.
We assessed heterogeneity in genetic effects across studies using the 12 statistic. For the
inclusion of stage Il and I11 data, we used genotype counts by case-control status and study,
and conducted a fixed effects meta-analysis. We also conducted a meta-analysis based on
estimates of allelic odds ratio adjusted by age, sex, smoking status, DNA source and study;
the estimates did not materially differ from the fixed-effects meta-analysis (Supplementary
Table 3).

Polytomous logistic regression was used to obtain estimates of effect for different tumor
subtypes. Case-only analyses with tumor type as an outcome were used to test for
differences in effect size across subtypes. Models for tumor grade constrained the effect size
to increase linearly across levels. Genotype-smoking interactions were assessed using
logistic regression for grouped data adjusted by study and including interaction terms. Forest
plots by smoking, including summary estimates from fixed effects meta-analyses, are also
shown for rs1495741.

Data analysis and management was performed with GLU (Genotyping Library and Utilities
version 1.0), a suite of tools available as an open-source application for management,
storage and analysis of GWAS data, and STATA.

Estimate of Recombination Hotspots

Data Access

SequenceLDhot51 that uses an approximate marginal likelihood method52 was used to
compute likelihood ratio (LR) statistics for a set of putative hotspots across the region of
interest. We sequentially analyzed subsets of 100 controls of European descent (by pooling
5 controls from each study). We used Phasev2.1 to infer the haplotypes as well as
background recombination rates. The analysis was repeated with five non-overlapping sets
of 100 pooled controls.

The CGEMS data portal provides access to individual level data for investigators from
certified scientific institutions after approval of their submitted Data Access Request.

URLs:

CGEMS portal: http://cgems.cancer.gov/

CGF: http://cgf.nci.nih.gov/

GLU: http://code.google.com/p/glu-genetics/

EIGENSTRAT: http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm

SNP500Cancer: http://snp500cancer.nci.nih.gov/
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STRUCTURE: http://pritch.bsd.uchicago.edu/structure.html

Tagzilla: http://tagzilla.nci.nih.gov/
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rs1014971 22q13.1:37662569
rs8102137 19q12:34988693
rs11892031 2g37.1:234230022
rs1495741 8p22:18317161

Figure 1. Study design of multi-stage GWAS of bladder cancer

See Online Methods and Supplementary Table 1 for details of study designs and sample
sizes. *The tag SNP, rs1495741 located 3" of NAT241 was genotyped in subjects in stage 11
and I11 studies as well as on the lllumina bead chips used in stage I. **Includes 338
additional cases from NBCS that were added to the final combined analyses.
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A rs1014971 [C ] Chr 22g13.1: 37662569 (CBX6, APOBEC3A) g rs8102137 [C] Chr 18q12: 34988693 (CCNET)

Uksthied o

W i
C rs11892031 [C] Chr 2q37.1: 234230022 (UGT1A cluster) D rs1495741 [G] Chr 8p22: 18317161 (NAT2)

~tealpralue)

tgm
-

Figure 2. Association results, recombination and linkage disequilibrium plotsfor four regionson
chromosomes 22g13.1, 19912, 2q37.1 and 8p22

Results of stage | (green circles), combined stages Il and 111 (blue diamonds) and combined
data from the three stages (red diamonds) with P-values for log-additive association results
with recombination rates (cm/Mb) based on HapMap phase I data. Pairwise r2 values based
on control populations are displayed at the bottom for all SNPs included in the GWAS
analysis. Panel A depicts chromosome 22g13.1 region (37,617,065 to 37,743,614). Panel B
depicts the region of chromosome 19q12 (34,922,089 to 35,080,325). Panel C depicts the
region of 2937.1 (234,131,582 to 234,286,564). Panel D depicts the region of 8p22
(18,216,291 to 18,406,519). Genomic coordinates are based on NCBI Human Genome Build
36.3.
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