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Our study identified multiple novel loci associated with bladder cancer susceptibility, bringing the number of independent markers 
at genome-wide significance to 24. Genetic susceptibility markers, coupled with lifestyle risk factors such as smoking, could guide 
future preventive measures and screening strategies for bladder cancer.
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Genome-wide Association Study of Bladder Cancer Reveals New 
Biological and Translational Insights

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Genomic regions identified via genome-wide association studies (GWAS) for 

bladder cancer risk provide new insights into etiology.

Objective: To identify new susceptibility variants for bladder cancer in a meta-analysis of new 

and existing genome-wide genotype data.

Design, setting, and participants: Data from 32 studies that includes 13 790 bladder cancer 

cases and 343 502 controls of European ancestry were used for meta-analysis.

Outcome measurements and statistical analyses: Log-additive associations of genetic 

variants were assessed using logistic regression models. A fixed-effects model was used for 

meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by 

sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and 

novel susceptibility variants and tested for interaction with smoking.

Results and limitations: Multiple novel loci associated with bladder cancer susceptibility 

(6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) and improved signals from three known 

regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers 

at genome-wide significance (p < 5 × 10−8) to 24. The 4p16.3 (FGFR3/TACC3) locus was 

associated with a stronger risk for women than for men (p = 0.002). Bladder cancer risk 

was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; 

multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 

(LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS 

markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44–1.53), 

which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), 

revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to 

the PRS (eg, 1st vs 10th decile) for both smokers and nonsmokers.

Conclusions: We report novel loci associated with the risk of bladder cancer that provide clues 

to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify 

lifetime risk. The PRS combined with smoking history and other established risk factors for 

bladder cancer risk has the potential to inform future screening efforts for bladder cancer.

Patient summary: We identified new genetic markers that provide biological insights into the 

genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, 

such as smoking, may inform future preventive and screening strategies for bladder cancer.
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Bladder cancer; Germline genetics; Genome-wise association study; Gene-environment interaction
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1. Introduction

Previous genome-wide association studies (GWAS) have identified more than a dozen loci 

associated with bladder cancer risk among individuals of European [1-10] and East Asian 

[11-14] ancestry. Follow-up studies of GWAS regions [9,15-20] have yielded important 

insights into underlying molecular mechanisms. It is estimated that these susceptibility loci 

explain approximately 12% of the familial risk of bladder cancer [1], suggesting that more 

loci are yet to be identified [21].

Cigarette smoking is the leading risk factor for bladder cancer, and interactions with genetic 

susceptibility variants have been identified [7,22]. The combined effects of smoking and 

genetic risk factors, as well as other risk factors such as occupational exposures [23], may 

have important clinical implications for risk stratification and efforts to achieve early cancer 

detection.

We conducted a meta-analysis of genome-wide genotype data across 32 international 

studies. By doubling the number of previously published cases with genome-wide scan data 

to include 13 790 bladder cancer cases and 343 502 control subjects of European ancestry, 

we aimed to identify novel susceptibility loci and evaluate interactions with smoking.

2. Materials and methods

2.1. Study sample

We analyzed data from published and unpublished genotyped studies (Supplementary Table 

1). Cases were defined as histologically confirmed primary carcinoma of the urinary bladder 

of all stages, including carcinoma in situ (International Classification of Diseases for 

Oncology, C670-C679, 188); cases in the UK Biobank include only those with tumor stage 

≥T1 [24]. All histological subtypes were included. Each study obtained informed consent 

from participants and approval from the relevant institutional review board.

2.2. Statistical analyses

The samples were analyzed separately for nine study/array groups using individual 

genotypes from seven genotyping platforms (Supplementary Table 1). Imputation was 

performed with the Michigan Imputation Server, using the Haplotype Reference Consortium 

dataset (HRC release 1.1). Two studies (CNIO/UROMOL and deCODE) provided summary-

level results after imputation (Supplementary material). Individuals of European ancestry 

were identified using principal component analysis. After quality control, data for 13 447 

cases and 342 580 control subjects of European ancestry were analyzed, with a genomic 

inflation statistic for the meta-analysis of λ = 1.098.

Log-additive effects for 9 680 336 genotyped/imputed variants were calculated using 

SNPTEST, adjusted for array-specific significant principal components, separately for each 

study/array group and meta-analyzed using a fixed-effects model to calculate odds ratios 

(ORs) and 95% confidence intervals (CIs). Tests of heterogeneity were performed using 

Cochrane’s Q statistic. Stratified analyses were conducted to evaluate effect modification by 

sex and smoking status (never vs ever, and never vs former vs current smokers). Polytomous 
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logistic regression was used for analyses of low-grade or high-grade non–muscle-invasive 

bladder cancer (NMIBC) or muscle-invasive bladder cancer (MIBC); only subjects with 

complete stage/grade information were used for these analyses. Summary statistics were 

used for: (1) a linkage disequilibrium (LD) score regression analysis (Supplementary Fig. 1), 

and (2) GWAS analysis of regulatory or functional data with LD correction (GARFIELD; 

Supplementary Fig. 2).

For calculation of the polygenic risk score (PRS), the GWAS discovery set included tumors 

of all stages; independent PRS validation data sets are described in the Supplementary 

material. The proportion of the familial relative risk explained was calculated [25] using 

an overall familial relative risk of 1.8 for bladder cancer (reported in [26]). Additive 

and multiplicative tests for interactions between individual markers and the 24-marker 

PRS with smoking status were computed using the R package CGEN (R Foundation for 

Statistical Computing, Vienna, Austria). To identify a subgroup of high-risk individuals 

who could potentially be targeted for greater preventive efforts and surveillance, we used 

the Individualized Coherent Absolute Risk Estimator (iCARE) software (iCare Software, 

Boxborough, MA, USA) to estimate the residual lifetime absolute risk (AR) of bladder 

cancer by PRS deciles for 50-yr-old White non-Hispanic never, former, and current smokers 

for males and females separately over a projected 30-yr span (Supplementary material).

2.3. In silico functional analyses of new susceptibility loci

Expression quantitative trait loci (eQTL) analysis of all new loci was performed using data 

from The Cancer Genome Atlas (TCGA, 412 MIBC cases) and UROMOL (359 NMIBC 

cases). Colocalization analysis of GWAS and eQTL signals was performed with R packages 

LocusCompareR (R Foundation for Statistical Computing) and coloc (Supplementary 

material).

A transcriptome-wide association study (TWAS) for bladder cancer risk was conducted 

using 412 TCGA bladder tumors and normal tissues from GTEx (48 tissue types, 80–491 

samples per tissue; Supplementary material).

Formalin-fixed, paraffin-embedded tumor tissue blocks from the New England Bladder 

Cancer Study (NEBCS), the Spanish Bladder Cancer EPICURO Study (SBCS), and the 

UROMOL consortium were used to determine FGFR3 somatic mutations (Supplementary 

material).

3. Results

3.1. Identification of GWAS signals

Using genome-wide data from nearly 7000 new cases combined with previous GWAS, seven 

new genome-wide significant loci were identified. Five loci are novel: 6p22.3 (rs72826305, 

CASC15/LOC105374970; p = 1.81 × 10−10), 7q36.3 (rs2125484, LOC389602; p = 1.42 × 

10−9), 9q31.1 (rs4743687, SMC2; p = 2.05 × 10−8), 10q22.1 (rs7076867, COL13A1; p = 

5.60 × 10−13), and 19q13.33 (rs411482, SULT2B1-FAM83E; p = 1.16 × 10−12; Table 1, 

Supplementary Table 2). Two signals [1,2] that had previously approached but had not yet 
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achieved genome-wide significance were confirmed for 6p22.3 (rs6910215, CDKAL1; p = 

1.05 × 10−8) and 8q21.13 (rs5003154, PAG1; p = 1.15 × 10−10).

Genome-wide significant associations for all published regions were confirmed 

(Supplementary Table 3), except for rs10936599 (3q26.2 MYNN/TERC; p = 1.16 × 

10−6) [2]. Based on conditional analyses, two previous GWAS signals were improved by 

correlated markers: rs2896518 at 4p16.3 (FGFR3/TACC3; p = 5.28 × 10−15) and rs2242652 

or rs10069690 at 5p15.33 (CLPTM1L/TERT; p = 4.06 × 10−15 and p = 1.54 × 10−14, 

respectively). At 11p15.5, a second independent signal was identified, rs7937265 (p = 1.10 

× 10−8). Within the 1p13.3 locus, which harbors the GSTM1 deletion, a well-established 

genetic risk factor for bladder cancer [7,27], we explored a strong association signal for 

a low-quality imputed marker, rs36209093 (p = 3.21 × 10−18; Supplementary Table 4, 

Supplementary Fig. 3). A proxy marker (chr1:110229772) effectively tagged the GSTM1 
deletion, improving the association signal (p = 8.84 × 10−23).

3.2. Genome-wide analyses stratified by smoking status and sex

Results for stratified analyses by study/array groups are presented in Supplementary Table 

5. Among current and ever smokers (ie, current and former smokers combined), rs1414253 

at 9p21.3 achieved genome-wide significance (p = 9.37 × 10−9 for current smokers and 

p = 1.23 × 10−8 for ever smokers; Table 1). This effect is driven primarily by current 

smokers (Supplementary Table 6). Analyses stratified by sex did not reveal new signals, 

but effect modification was observed for rs2896518 at 4p16.3 (TACC3/FGFR3, interaction 

p = 0.002); the effect was larger for women (OR 1.34, 95% CI 1.22–1.47; p = 1.93 × 

10−9) than for men (OR 1.12, 95% CI 1.06–1.18; p = 4.20 × 10−5; Supplementary Table 7). 

Results were unchanged after adjustment for smoking. The sex-specific effect for rs2896518 

was pursued with respect to somatic FGFR3 mutations in a set of predominantly NMIBC 

tumors (NEBCS, SBCS, and UROMOL). Somatic FGFR3 mutations were more common 

among females than among males (OR 1.33, 95% CI 1.07–1.66 for females vs males; 

Table 2, Supplementary Table 8). Furthermore, each additional rs2896518-A risk allele was 

associated with an increase in the frequency of FGFR3 mutations (OR 1.19, 95% CI 1.01–

1.40; Table 2; Supplementary Table 8 provides additional results for TCGA). Analyses of 

FGFR3+ mutation status in TCGA (MIBC only) did not show a consistent association with 

female sex on multivariate analysis; however, a positive association per rs2896518-A risk 

allele was observed (OR 1.84, 95% CI 1.15–2.92; Supplementary Table 8).

3.3. NMIBC- and MIBC-stratified GWAS analyses

Heterogeneity of risk by muscle invasiveness was observed for two loci, rs2896518 (TACC3/
FGFR3; p for heterogeneity [pH] = 2.67 × 10−9) and rs7937265 (TNNT3/LSP1; pH = 0.027; 

Supplementary Table 9). For both markers, the associations were strongest for low-grade 

NMIBC (pH = 1.30 × 10−11 and pH = 3.27 × 10−4, respectively). In addition, rs5003154 

(PAG1) showed significant heterogeneity among NMIBC subtypes (pH = 0.01) with a 

stronger association observed for low-grade NMIBC. Analysis of the novel signals in TCGA 

did not reveal associations with consensus molecular classification subtypes [28], while 

the PAG1-rs5003154-C risk allele was enriched in iLuminal compared to iBasal tumors 
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[29] (Supplementary Table 10). In both NMIBC and MIBC mRNA subtypes, higher PAG1 
expression was detected in luminal tumors (Supplementary Fig. 4).

3.4. In silico functional analyses

In silico analysis (GARFIELD) showed that risk variants were significantly enriched 

for putative regulatory characteristics (Supplementary Fig. 2). Analyses of TCGA and 

UROMOL data revealed only one eQTL in the same direction in both sets (rs5003154-C 

risk allele and PAG1 expression: β = −0.142, p = 0.035 for TCGA, and β = −0.195, 

p = 3.7 × 10−15 for UROMOL; Supplementary Table 11). The posterior probability 

for colocalization of the GWAS signal and eQTL for PAG1 expression was 98.9% for 

UROMOL (NMIBC) and was weak (19.6%) for TCGA (MIBC; Supplementary Fig. 5). 

TWAS results for TCGA data indicated that a higher risk of bladder cancer was associated 

with genetically predicted expression of some genes identified in previous bladder cancer 

analyses [18,27]. The predicted gene expression of FUT2 (uncorrected p = 5.84 × 10−8) 

near the novel GWAS marker rs411482 (19q13.33) remained significant after correction for 

multiple testing (Supplementary Table 12 for bladder tissue and data sets for normal tissues).

3.5. Gene-smoking interactions

A previous multiplicative interaction between smoking and the 8q22 locus (NAT2) [27,30] 

was confirmed, indicating higher risk among ever smokers with the NAT2 slow acetylation 

genotype/phenotype (interaction p = 0.004). Two other loci also showed evidence of 

multiplicative interaction with ever smoking, namely 9p21.3 (CDKN2A; rs1414253, 

interaction p = 0.02; Supplementary Table 13) and 8q21.1 (PAG1; rs5003154; interaction p 
= 0.01; Supplementary Table 13). For rs1414253 (9p21.3), the higher risk was for smokers, 

while for rs5003154 (8q21.1) the higher risk was observed for never smokers.

3.6. PRS

Using the combined set of 24 independent GWAS markers, a PRS was generated 

(Supplementary Table 14). In our discovery GWAS set, the OR per standard deviation 

increase in the PRS was 1.49 (95% CI 1.44–1.53) after adjustment for age, sex, and study/

array groups. This 24-marker PRS association was externally evaluated using data from 

two independent series of cases and controls from the PLCO cancer screening trial and the 

UK Biobank (Supplementary material) and was found to be strongly associated with risk, 

with hazard ratios of 1.51 (95% CI 1.38–1.65) and 1.32 (95% CI 1.21–1.44), respectively 

(Supplementary Table 15). Overall, we estimate that the 24-marker PRS explains 14.8% 

of the familial risk of bladder cancer for individuals of European ancestry. In preliminary 

analyses using our GWAS discovery set, there was evidence of additive (Supplementary 

Table 16), but not multiplicative, interaction between smoking and the PRS. Notably, 

differences in the AR of bladder cancer due to smoking between the low and high PRS 

deciles indicate that the potential impact of smoking cessation is greater for those at higher 

genetic risk than for individuals at lower genetic risk (additive p for interaction = 0.01 for 

≥80th vs ≥10th PRS decile comparing current vs former smokers).

Further exploratory analyses in our discovery set evaluated how the PRS could estimate 

the residual lifetime AR of bladder cancer in the US population on the basis of incidence, 
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mortality, and cigarette smoking data for 50-yr-old White non-Hispanic men and women 

over the next 30 yr, overall, by PRS decile categories, and for the highest percentiles 

(1% or 5%; Fig. 1A,B). For males, the overall average lifetime AR was 1.9% for never 

smokers (range 0.9–3.5% by PRS deciles), 4.0% for former smokers (range 1.9–7.4% by 

PRS deciles), and 7.1% for current smokers (range 3.4–13.0% by PRS deciles). For females, 

the overall average lifetime AR was 0.4% for never smokers (range 0.2–0.8% by PRS 

deciles), 1.1% for former smokers (range 0.5–2.0% by PRS deciles), and 2.0% for current 

smokers (range 0.9–3.7% by PRS deciles). For the highest 1% PRS percentile, the average 

lifetime AR for males differed substantially by smoking status, with risks of 5.0%, 10.3%, 

and 18.0% for never, former, and current smokers, respectively. For the highest 1% PRS 

percentile, the corresponding lifetime AR for females was 1.2%, 2.9%, and 5.3% for never, 

former, and current smokers, respectively. Notably, stratification by this PRS identified a 

subgroup of never-smoker males and females who had a higher genetic risk of developing 

bladder cancer in comparison to current smokers with low genetic risk (Fig. 1C). Using 

census estimates and the above inputs, we estimated the number of cancers that could be 

prevented according to the combination of PRS and smoking status (Fig. 2). For example, 

among 50-yr-old non-Hispanic White individuals in 2017 (~2.6 million people, Fig. 2A) we 

estimated that a successful smoking cessation program for current smokers at the highest 

genetic risk (ie, 10th PRS decile) would prevent 2061 cases (1611 males, 450 females; Fig. 

2B).

4. Discussion

We report a new meta-analysis of bladder cancer using genome-wide data for nearly 7000 

new cases combined with previous GWAS in which the number of susceptibility loci has 

nearly doubled.

Genome-wide in silico functional analyses identified enrichment of associated variants 

within regulatory regions. For one of the GWAS regions, at 8q21.13, we observed strong 

colocalization of the GWAS and eQTL signals for PAG1 expression, especially in NMIBC, 

suggesting a shared functional effect of the lead marker, rs5003154, on PAG1 expression, 

bladder cancer risk, and a previously undescribed role in the luminal differentiation 

program. Our TWAS results implicate FUT2 as a candidate gene for the 19q13.33 locus 

(rs411482); this region is also associated with risks of cancer of the colon, pancreas, 

endometrium, cervix, and lung [31-33] and differential susceptibility to infections [34]. 

Evidence of pleiotropy was also noted for other new GWAS loci. Specifically, rs4743687 

(9q31.1, SMC2) is linked to variants associated with pancreatic cancer [35], breast 

cancer [25], basal cell carcinoma [36], and ovarian cancer [37]. The single-nucleotide 

polymorphism rs7937265 (11p15.5, TNNT3-LSP1) is linked to variants associated with 

monocyte count, systolic blood pressure, cardiovascular disease, and breast cancer risk [38].

Select loci overlap with regions in which somatic alterations are frequently observed in 

bladder tumors. Specifically, rs6910215 (6p22, near E2F3) is located within a region 

frequently amplified or overexpressed in bladder tumors, impacting cell cycle regulation 

[39]. Similarly, the novel variants within 9p21 (CDKN2A) are in a region frequently deleted 

in bladder tumors [40], and our results suggest an interaction with smoking.
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In our meta-analysis, the effect of rs2896518 (TACC3/FGFR3, 4p16.3) was stronger for 

women (interaction p = 0.002) and did not change on adjustment for smoking. FGFR3 
somatic mutations are a hallmark of NMIBC, detectable in up to 80% of Ta tumors [40]. 

It is notable that an excess of FGFR3 somatic mutations was observed among women, 

despite lower bladder-cancer incidence rates in comparison to men [41]. The associations 

with somatic FGFR3 mutations were stronger for the new 4p16.3 lead marker rs2896518 

(Table 2) than for the previous lead, rs798766 [10,23]. Further detailed exploration of 

sex differences and differential patterns by stage between germline variants and somatic 

mutations at this locus are warranted, including evaluation of differences by expression 

subtypes, as these too may show differences by sex [42] and stage. More complete data 

on stage, grade, sex, and smoking status will be needed in subsequent studies to explore 

our preliminary findings. We observed an interaction between the newly generated 24-

marker PRS and cigarette smoking on the additive scale, suggesting important lifetime risk 

differences. Projections for the average lifetime AR of bladder cancer for never, former, and 

current smokers among males and females revealed an approximately fourfold difference, 

depending on the PRS decile (Fig. 1A,B). Furthermore, the lifetime AR distribution by 

smoking status overlapped at the upper tail of the never-smoker and lower tail of the 

current-smoker distributions, identifying a subgroup of never-smoker males and females 

with comparable or even higher genetic risk of developing bladder cancer in comparison to 

current smokers with low genetic risk (Fig. 1C).

The 24-marker PRS generated on the basis of this meta-analysis was also evaluated in 

two prospective cohorts and showed comparable results. Extension of the GWAS to a 

larger set should identify additional susceptibility loci and generate a more precise PRS 

[43]. The development of a risk model that includes the PRS and lifestyle/environmental 

risk factors will require further characterization of the relative risk associated with these 

factors and exploration of their interactions. Furthermore, the absolute risk projections need 

prospective validation [43,44]. Since our PRS was constructed using data for individuals of 

European ancestry, the AR estimates may not be accurate when applied to individuals of 

other ancestries, for whom genetic studies are limited. In this regard, a future goal should 

be to conduct larger, diverse GWAS that will allow cross-ancestry studies, which have 

been successful for other cancers such as prostate cancer. The utility of well-calibrated risk 

models will still depend on advances in clinical screening tools for those at high risk of 

bladder cancer.

Although smoking cessation is the most powerful way to prevent bladder cancer, these 

efforts might be further improved by identification of individuals with elevated genetic 

risk because of both common and rare high-penetrance variants (including familial bladder 

cancer) who may especially benefit from smoking cessation or be directed to more intense 

clinical management under high-risk scenarios (eg, recurrent hematuria or urinary tract 

infections). A limitation of the study is that we could not test associations with disease 

progression or treatment response, as these clinical data were not available. These issues 

warrant future study.
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5. Conclusions

We identified multiple susceptibility variants associated with bladder cancer risk. 

Prospective validation of a risk prediction model that includes the PRS, smoking status, 

and lifestyle/environmental factors represents the next step towards developing effective 

instruments for precision prevention oncology for bladder cancer.
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Figure 1. 
Estimates of absolute risk of bladder cancer for White non-Hispanic males and females 

by polygenic risk score (PRS) and smoking status. (A) Average and top (5% and 1%) 

absolute risks and 95% confidence intervals (CIs) for never, former, and current smokers 

by PRS deciles for White non-Hispanic males and females (age 50–80 yr). (b) Bar graph 

of average absolute risk for never, former, and current smokers showing that the risk 

difference increases with PRS decile. (C) Population density plots of the entire absolute 

risk distributions for male and female never, former, and current smokers. Green shading 

depicts the overlap in absolute risk distribution for never and current smokers, indicating that 

some proportion of never smokers at high genetic risk have the same absolute risk of bladder 

cancer as current smokers at low genetic risk.
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Figure 2. 
Estimates of the number of bladder cancer cases that could be prevented according to the 

combination of polygenic risk score (PRS) and smoking status. (A) Inputs and data sources 

used in the analyses. (B) The number of bladder cancer cases that could be prevented by 

PRS deciles for males and females under two scenarios: (1) if all current smokers quit 

smoking and (2) if all current smokers had never started smoking. (C) Estimates of the 

number of cases that could be prevented for males and females by PRS deciles for the 

scenarios in B.
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Table 1 –

Novel loci associated with bladder cancer susceptibility a

SNP Band Position
(hg19)

Gene
region

Allele EA
frequency

Studies
(n)

Cases
(n)

CTR
(n)

OR
(95% 
CI)

p
value

Q b

EA Ref CTR Cases

Previously identified regions

rs2896518 4p16.3 1757559 TACC3, FGFR3 A G 0.21 0.23 9 13447 342 
580

1.17 
(1.13–
1.22)

5.28×10−15 0.1901

rs2242652 5p15.33 1280028 CLPTM1L, 
TERT

G A 0.80 0.82 9 13447 342 
580

1.18 
(1.14–
1.24)

4.06×10−15 0.9181

rs10069690 1279790 C T 0.74 0.76 9 13447 342 
580

1.16 
(1.12–
1.22)

1.54×10−14 0.7989

rs7937265 11p15.5 1947800 TNNT3, LSP1 G C 0.19 0.21 9 13447 342 
580

1.13 
(1.08–
1.18)

1.10×10−8 0.1406

Newly identified regions

rs6910215 6p22.3 20783394 CDKAL1 C T 0.57 0.59 9 13447 342 
580

1.10 
(1.06–
1.14)

1.05×10−8 0.6166

rs72826305 6p22.3 21826729 CASC15/
LOC105374970

C T 0.34 0.37 9 13447 342 
580

1.12 
(1.08–
1.16)

1.81×10−10 0.4132

rs2125484 7q36.3 155759638 LOC389602 G A 0.58 0.60 9 13447 342 
580

1.11 
(1.07–
1.15)

1.42×10−9 0.7918

rs5003154 8q21.13 81986953 PAG1 C T 0.51 0.54 9 13447 342 
580

1.11 
(1.08–
1.15)

1.15×10−10 0.8466

rs4743687 9q31.1 106856910 SMC2 C T 0.44 0.46 9 13447 342 
580

1.10 
(1.06–
1.13)

2.05×10−8 0.0659

rs7076867 10q22.1 71582996 COL13A1 C T 0.95 0.96 9 13447 342 
580

1.31 
(1.22–
1.41)

5.60×10−13 0.886

rs411482 19q13.33 49103447 SULT2B1-
FAM83E

C T 0.61 0.63 9 13447 342 
580

1.13 
(1.09–
1.17)

1.16×10−12 0.3869

In smokers

rs1414253 9p21.3 21755630 LOC107987026, 
MTAP/
CDKN2A

A G 0.42 0.43

Ever 
smokers

8 9251 57124 1.14 
(1.09–
1.19)

1.23×10−8 0.5183

Current 

smokers c
6 3286 2802 1.27 

(1.17–
1.38)

9.37×10−9 0.1519

SNP = single-nucleotide polymorphism; EA = effect allele; Ref = reference; CTR = control; OR = odds ratio; CI = confidence interval

a
A fixed-effects meta-analysis by study was used to calculate the combined OR, 95% CI, and p trend for the EA, adjusted for age and array-specific 

principal components.

b
Cochran’s Q (measure of heterogeneity) p value.
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c
rs10811586, which is in linkage disequilibrium with rs1414253 (D′ = 0.87, R2 = 0.72 in Europeans in 1000 Genomes), showed a slightly more 

significant association among current smokers (p = 2.29E-09).
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Table 2 –

Case-case ORs for the associations of sex and rs2896518 mutation with FGFR3 somatic mutations a

Study Female versus male rs2896518-A risk allele

Cases (n) OR (95% CI) b Cases (n) OR (95% CI) b

FGFR3 wt FGFR3 M+ FGFR3 wt FGFR3 M+

SBCS 551 391 1.18 (0.80–1.73) 480 338 1.07 (0.84–1.37)

NEBCS 171 174 1.59 (0.96–2.64) 132 142 1.46 (0.96–2.21)

UROMOL 401 460 1.35 (0.98–1.87) 291 373 1.23 (0.95–1.59)

Meta-analysis 1123 1025 1.33 (1.07–1.66) 885 816 1.19 (1.01–1.40)

p value 0.011 0.039

OR = odds ratio; CI = confidence interval; wt = wild type; M+ = mutation; SBCS = Spanish Bladder Cancer EPICURO study; NEBCS = New 
England Bladder Cancer Study.

a
Details on FGFR3 mutation analyses are provided in the Supplemental material.

b
Unadjusted OR for the odds of having an FGFR3 mutation; additionally adjusted ORs are provided in Supplementary Table 8.

Eur Urol. Author manuscript; available in PMC 2024 July 01.


	Abstract
	Introduction
	Materials and methods
	Study sample
	Statistical analyses
	In silico functional analyses of new susceptibility loci

	Results
	Identification of GWAS signals
	Genome-wide analyses stratified by smoking status and sex
	NMIBC- and MIBC-stratified GWAS analyses
	In silico functional analyses
	Gene-smoking interactions
	PRS

	Discussion
	Conclusions
	Appendix A. Members of the UROMOL Consortium
	References
	Figure 1.
	Figure 2.
	Table 1 –
	Table 2 –

