27 research outputs found

    Pleural fluid soluble triggering receptor expressed on myeloid cells-1 as a marker of bacterial infection: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pleural infection is a common clinical problem. Its successful treatment depends on rapid diagnosis and early initiation of antibiotics. The measurement of soluble triggering receptor expressed in myeloid cells-1 (sTREM-1) level in pleural effusions has proven to be a valuable diagnostic tool for differentiating bacterial effusions from effusions of other etiologies. Herein, we performed a meta-analysis to assess the accuracy of pleural fluid sTREM-1 in the diagnosis of bacterial infection.</p> <p>Methods</p> <p>We searched Web of Knowledge and Medline from 1990 through March 2011 for studies reporting diagnostic accuracy data regarding the use of sTREM-1 in the diagnosis of bacterial pleural effusions. Pooled sensitivity and specificity and summary measures of accuracy and Q* were calculated.</p> <p>Results</p> <p>Overall, the sensitivity of sTREM-1was 78% (95% CI: 72%-83%); the specificity was 84% (95% CI: 80%-87%); the positive likelihood ratio was 6.0 (95% CI: 3.3-10.7); and the negative likelihood ratio was 0.22 (95% CI: 0.12-0.40). The area under the SROC curve for sTREM-1 was 0.92. Statistical heterogeneity and inconsistency were found for sensitivity (p = 0.015, χ<sup>2 </sup>= 15.73, I<sup>2 </sup>= 61.9%), specificity (p = 0.000, χ<sup>2 </sup>= 29.90, I<sup>2 </sup>= 79.9%), positive likelihood ratio (p = 0.000, χ<sup>2 </sup>= 33.09, I<sup>2 </sup>= 81.9%), negative likelihood ratio (p = 0.008, χ<sup>2 </sup>= 17.25, I<sup>2 </sup>= 65.2%), and diagnostic odds ratio (p = 0.000, χ<sup>2 </sup>= 28.49, I<sup>2 </sup>= 78.9%). A meta-regression analysis performed showed that the Quality Assessment of Diagnostic Accuracy Studies score (p = 0.3245; RDOR, 4.34; 95% CI, 0.11 to 164.01), the Standards for Reporting of Diagnostic Accuracy score (p = 0.3331; RDOR, 1.70; 95% CI, 0.44 to 6.52), lack of blinding (p = 0.7439; RDOR, 0.60; 95% CI, 0.01 to 33.80), and whether the studies were prospective or retrospective studies (p = 0.2068; RDOR, 7.44; 95% CI, 0.18 to 301.17) did not affect the test accuracy. A funnel plot for publication bias suggested a remarkable trend of publication bias.</p> <p>Conclusions</p> <p>Our findings suggest that sTREM-1 has a good diagnostic accuracy and may provide a useful adjunctive tool for the diagnosis of bacterial pleural effusions. However, further studies are needed in order to identify any differences in the diagnostic performance of sTREM-1 of parapneumonic effusions and empyemas.</p

    Global transpiration data from sap flow measurements: The SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.This research was supported by the Minis-terio de Economía y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovación (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovación (grant no. CAS16/00207), the Agència de Gestió d’Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institució Catalana de Recerca i Estudis Avançats (Academia Award (JMV)). Víctor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain)

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Interventions for hyperhidrosis in secondary care : a systematic review and value-of-information analysis

    Get PDF
    Background: Hyperhidrosis is uncontrollable excessive sweating that occurs at rest, regardless of temperature. The symptoms of hyperhidrosis can significantly affect quality of life. The management of hyperhidrosis is uncertain and variable. Objective: To establish the expected value of undertaking additional research to determine the most effective interventions for the management of refractory primary hyperhidrosis in secondary care. Methods: A systematic review and economic model, including a value-of-information (VOI) analysis. Treatments to be prescribed by dermatologists and minor surgical treatments for hyperhidrosis of the hands, feet and axillae were reviewed; as endoscopic thoracic sympathectomy (ETS) is incontestably an end-of-line treatment, it was not reviewed further. Fifteen databases (e.g. CENTRAL, PubMed and PsycINFO), conference proceedings and trial registers were searched from inception to July 2016. Systematic review methods were followed. Pairwise meta-analyses were conducted for comparisons between botulinum toxin (BTX) injections and placebo for axillary hyperhidrosis, but otherwise, owing to evidence limitations, data were synthesised narratively. A decision-analytic model assessed the cost-effectiveness and VOI of five treatments (iontophoresis, medication, BTX, curettage, ETS) in 64 different sequences for axillary hyperhidrosis only. Results and conclusions: Fifty studies were included in the effectiveness review: 32 randomised controlled trials (RCTs), 17 non-RCTs and one large prospective case series. Most studies were small, rated as having a high risk of bias and poorly reported. The interventions assessed in the review were iontophoresis, BTX, anticholinergic medications, curettage and newer energy-based technologies that damage the sweat gland (e.g. laser, microwave). There is moderate-quality evidence of a large statistically significant effect of BTX on axillary hyperhidrosis symptoms, compared with placebo. There was weak but consistent evidence for iontophoresis for palmar hyperhidrosis. Evidence for other interventions was of low or very low quality. For axillary hyperhidrosis cost-effectiveness results indicated that iontophoresis, BTX, medication, curettage and ETS was the most cost-effective sequence (probability 0.8), with an incremental cost-effectiveness ratio of £9304 per quality-adjusted life-year. Uncertainty associated with study bias was not reflected in the economic results. Patients and clinicians attending an end-of-project workshop were satisfied with the sequence of treatments for axillary hyperhidrosis identified as being cost-effective. All patient advisors considered that the Hyperhidrosis Quality of Life Index was superior to other tools commonly used in hyperhidrosis research for assessing quality of life. Limitations: The evidence for the clinical effectiveness and safety of second-line treatments for primary hyperhidrosis is limited. This meant that there was insufficient evidence to draw conclusions for most interventions assessed and the cost-effectiveness analysis was restricted to hyperhidrosis of the axilla. Future work: Based on anecdotal evidence and inference from evidence for the axillae, participants agreed that a trial of BTX (with anaesthesia) compared with iontophoresis for palmar hyperhidrosis would be most useful. The VOI analysis indicates that further research into the effectiveness of existing medications might be worthwhile, but it is unclear that such trials are of clinical importance. Research that established a robust estimate of the annual incidence of axillary hyperhidrosis in the UK population would reduce the uncertainty in future VOI analyses

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF

    Perphenazine

    No full text

    Growth and water relations of field-grown Valencia orange trees under long-term partial rootzone drying

    Get PDF
    Climate, soil water potential (SWP), leaf relative water content (RWC), stem water potential (WPstem), stomatal conductance (gs), trunk, shoot and fruit growth of 'Valencia' orange trees were monitored during five consecutive seasons (2007â2012) to study water status and growth responses to irrigation placement or volume. 48 adult trees were exposed to conventional irrigation (CI, 100% of crop evapotranspiration on both sides of the rootzone), partial rootzone drying (PRD, 50% of CI water only on one alternated side of the rootzone) and continuous deficit irrigation (DI, 50% of CI water on both sides of the rootzone). Reducing irrigation volumes by 55% (DI) over CI increased leaf water deficit by 27% and reduced 'Valencia' fruit growth by 15% but not shoot or trunk growth. Similar water savings by PRD did not induce significant growth reductions. Differences in fruit growth rates determined 17% yield reduction in DI but not PRD trees. If we consider integrals of data across each season, PRD induced milder soil and leaf water deficit than DI but similar stomatal conductance. Tree daily water consumption (Etree) estimated from daily leaf transpiration was significantly lower in PRD and DI than in CI. Fruit growth efficiency (growth rate per unit Etree) was similar in all irrigation treatments, while shoot growth efficiency was higher in PRD than in CI. In PRD, an increased shoot growth efficiency rather than fruit growth efficiency is most likely due to water and assimilates being diverted from fruit to shoot growth under high VPD conditions. Although these results show good evidence of an irrigation placement effect inducing an advantage of the PRD strategy in 'Valencia' orange in terms of milder soil and leaf water deficit and more sustainable fruit growth compared to DI, PRD did not induce any significant advantage in terms of final yield over a simple reduction of irrigation volumes
    corecore