8 research outputs found
Signal transduction events induced by extracellular guanosine 5′triphosphate in excitable cells
A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5′triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50′00 ng ml−1 of nerve growth factor, whereas serum starvation causes C2C12 cells to differentiate into myotubes showing functional excitation–contraction coupling, with the expression of myosin heavy chain proteins. Our results show that GTP enhances the differentiation of both of these excitable cell lines. The early events in guanosine-based purine signal transduction appear to involve an increase in intracellular Ca2+ levels and membrane hyperpolarization. We further investigated the early activation of extracellular-regulated kinases and phosphoinositide 3-kinase in GTP-stimulated PC12 and C2C12 cells, respectively. We found that GTP promotes the activation of both kinases. Together, our results suggest that, even if there are some differences in the signalling pathways, GTP-induced differentiation in both cell lines is dependent on an increase in intracellular Ca2+
Extracellular guanosine-5′-triphosphate modulates myogenesis via intermediate Ca(2+)-activated K(+) currents in C2C12 mouse cells
In this study we investigated the role of extracellular 5′-guanosine-triphosphate (GTP) on early phases of skeletal muscle differentiation using the widely used C2C12 mouse cells as a myogenic model. We show that extracellular GTP binding to specific sites activates a metabotropic cascade that leads to a transient intracellular Ca(2+) mobilization, consequent activation of the intermediate Ca(2+)-activated K(+) channels (IK(Ca)), and hyperpolarization of the plasma membrane. We further show that in differentiating C2C12 myoblasts GTP induces a proliferative boost, and increases the number of cells positive for the myosin heavy chain (MyHC) proteins. These effects were shown to be mediated by the IK(Ca) channel-dependent hyperpolarization, as evidenced by their disappearance when myoblasts were incubated with the IK(Ca) channel inhibitor charybdotoxin. These data give new insights into nucleotide purinergic signalling pathways, and address the role of the GTP-dependent IK(Ca) channel activation and hyperpolarization in myogenesis