2,236 research outputs found

    Astrocyte glutamine synthetase : pivotal in health and disease

    Get PDF
    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease

    Filming the glial dreams: real-time imaging of cannabinoid receptor trafficking in astrocytes

    Get PDF
    How does the brain process incoming information and produce thoughts? These questions represent, to all likelihood, the most challenging matters ever faced by natural sciences, matters which may never be fully comprehended. The evolution of the nervous system that, in about billion of years, brought into existence the human brain progressed through an ever-increasing complexity of neural networks. This evolution began from the diffuse nervous system, in which primordial neurons were able to sense the environmental inputs and convey them to effector organs and to the neighbouring neurons. At the next evolutionary stage the conglomerates of neuronal cell bodies, the ganglia, appeared, thus forming the primitive centralized nervous system. The developments which ensued went through a continuous increase in complexity of neuronal conglomerates, which eventually formed the central nervous system, which attained maximal perfection in mammals. In this issue of ASN NEURO, Osborne et al. have described details of real-time imaging of cannabinoid receptor trafficking in astrocytes, a technique that will help to elucidate the role of these receptors in the ever-increasing complex neural networks

    Novel mechanism for temperature-independent transitions in flexible molecules: role of thermodynamic fluctuations

    Full text link
    Novel physical mechanism is proposed for explanation of temperature-independent transition reactions in molecular systems. The mechanism becomes effective in the case of conformation transitions between quasi-isoenergetic molecular states. It is shown that at room temperatures, stochastic broadening of molecular energy levels predominates the energy of low frequency vibrations accompanying the transition. This leads to a cancellation of temperature dependence in the stochastically averaged rate constants. As an example, physical interpretation of temperature-independent onset of P2X_3 receptor desensitization in neuronal membranes is provided.Comment: 4 pages, 1 figur

    Memory formation shaped by astroglia

    Get PDF
    Astrocytes, the most heterogeneous glial cells in the central nervous system (CNS), execute a multitude of homeostatic functions and contribute to memory formation. Consolidation of synaptic and systemic memory is a prolonged process and hours are required to form long-term memory. In the past, neurons or their parts have been considered to be the exclusive cellular sites of these processes, however, it has now become evident that astrocytes provide an important and essential contribution to memory formation. Astrocytes participate in the morphological remodeling associated with synaptic plasticity, an energy-demanding process that requires mobilization of glycogen, which, in the CNS, is almost exclusively stored in astrocytes. Synaptic remodeling also involves bidirectional astroglial-neuronal communication supported by astroglial receptors and release of gliosignaling molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as Ca(2+), for phasic, and cyclic adenosine monophosphate (cAMP), for tonic signal coordination with neuronal processes. The detection of signals by astrocytes and the release of gliosignaling molecules, in particular by vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of magnitude longer than that present in stimulus–secretion coupling in neurons. These particular arrangements position astrocytes as integrators ideally tuned to support time-dependent memory formation

    Inclusive Brain: From Neuronal Doctrine to the Active Milieu

    Get PDF
    This work was supported by the Russian Foundation for Basic Research (RFBR), Grant No. 21-54-53018

    Lifestyle-dependent microglial plasticity: training the brain guardians

    Get PDF
    Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity

    Lifestyle-dependent microglial plasticity: training the brain guardians.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-08-01, epub 2021-08-05Publication status: PublishedLifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity
    • …
    corecore