7,473 research outputs found

    A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps

    Get PDF
    A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote-sensing images. Such a system is able to face the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal data set), no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple classifier architecture. Each classifier of the ensemble exhibits the following novel peculiarities: i) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; ii) it is based on a partially unsupervised methodology capable to accomplish the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood classification approach and a non-parametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid maximum-likelihood and RBF neural network cascade classifiers are defined by exploiting the peculiarities of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote-sensing data (e.g., images acquired by passive sensors, SAR images, multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource data set confirm the effectiveness of the proposed system

    Ab-Initio Simulations of Deformation Potentials and Electron Mobility in Chemically Modified Graphene and two-dimensional hexagonal Boron-Nitride

    Full text link
    We present an ab-initio study of electron mobility and electron-phonon coupling in chemically modified graphene, considering fluorinated and hydrogenated graphene at different percentage coverage. Hexagonal Boron Carbon Nitrogen (h-BCN) is also investigated due the increased interest shown by the research community towards this material. In particular, the Deformation Potentials are computed by means of Density Functional Theory (DFT), while the carrier mobility is obtained according to the Takagi model (S. Takagi, A. Toriumi, and H. Tango, IEEE Trans. Electr. Dev. 41, 2363 (1994)). We will show that graphene with a reduced degree of hydrogenation can compete, in terms of mobility, with silicon technology.Comment: 9 pages, 2 figures, 2 table

    A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images

    Get PDF
    A new suboptimal search strategy suitable for feature selection in very high-dimensional remote-sensing images (e.g. those acquired by hyperspectral sensors) is proposed. Each solution of the feature selection problem is represented as a binary string that indicates which features are selected and which are disregarded. In turn, each binary string corresponds to a point of a multidimensional binary space. Given a criterion function to evaluate the effectiveness of a selected solution, the proposed strategy is based on the search for constrained local extremes of such a function in the above-defined binary space. In particular, two different algorithms are presented that explore the space of solutions in different ways. These algorithms are compared with the classical sequential forward selection and sequential forward floating selection suboptimal techniques, using hyperspectral remote-sensing images (acquired by the AVIRIS sensor) as a data set. Experimental results point out the effectiveness of both algorithms, which can be regarded as valid alternatives to classical methods, as they allow interesting tradeoffs between the qualities of selected feature subsets and computational cost

    An Adaptive Semi-Parametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semi-parametric technique for the unsupervised estimation of the statistical terms associated with the gray levels of changed and unchanged pixels in a difference image is presented. Such a technique exploits the effectivenesses of two theoretically well-founded estimation procedures: the reduced Parzen estimate (RPE) procedure and the expectation-maximization (EM) algorithm. Then, thanks to the resulting estimates and to a Markov Random Field (MRF) approach used to model the spatial-contextual information contained in the multitemporal images considered, a change detection map is generated. The adaptive semi-parametric nature of the proposed technique allows its application to different kinds of remote-sensing images. Experimental results, obtained on two sets of multitemporal remote-sensing images acquired by two different sensors, confirm the validity of the proposed approach

    A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images

    Get PDF
    A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach

    Combining Parametric and Non-parametric Algorithms for a Partially Unsupervised Classification of Multitemporal Remote-Sensing Images

    Get PDF
    In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a maximum-likelihood (ML) classifier and a radial basis function (RBF) neural-network classifier, on the basis of the distribution of the new image to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effectiveness of the proposed system

    Keys to effective transit strategies for commuting

    Get PDF
    Commuting poses relevant challenges to cities\u2019 transport systems. Various studies have identified transit as a tool to enhance sustainability, efficiency and quality of the commute. The scope of this paper is to present strategies that increase public transport attractiveness and positively impact its modal share, looking at some case studies and underlining key success factors and possible elements of replica to be ultimately planned in some of the contexts of the Interreg project SMART-COMMUTING. The strategies analyzed in this paper concern prices and fares, service expansion, service improvements, usage of vehicle locators and other technology, changes to the built environment. Relevant gains in transit modal share are more easily achievable when considering integrations between various strategies, thus adapting and tailoring the planning process to the specific context

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode
    • …
    corecore