216 research outputs found
Concordance between school outcomes and developmental follow-up results of very preterm and/or low birth weight children at the age of 5 years
Contains fulltext :
53593.pdf (publisher's version ) (Closed access)INTRODUCTION: Long-term follow-up studies have revealed a high frequency of developmental disturbances in preterm survivors of neonatal intensive care who were formerly considered to be non-disabled. These developmental disturbances interfere with the acquisition of everyday skills and, in particular, with normal school functioning. METHODS: Developmental and school outcomes of 355 children, age 5 years at the time of the study, who had a mean gestational age of 30.2 weeks (SD: 1.95) and a mean birth weight of 1272 g (SD: 326) were investigated. Children with severe handicaps were excluded from the study. Perinatal data, information from a parental and school questionnaire and data from standardized developmental tests were used to explain the differences. RESULTS: An agreement of 72% was found between developmental follow-up and school outcomes. Normal developmental results but problematic school outcomes were found for 15% of the children tested. There were more boys than girls in this latter group as well as small-for-gestational-age children with relatively poor motor or language development. The schools had not identified problems in 13% of the children, whereas their developmental outcomes were problematic. These children had less neonatal morbidity and relatively higher IQ's than children who also had problematic developmental outcomes but who had been signalled as problematic by their schools. CONCLUSIONS: Schools have a good insight in the school functioning of children who are developing well and of children with the lowest developmental scores and the most complicated neonatal histories. How school and developmental outcomes interrelate in the in-between groups remains a challenging question that could be answered by following these children throughout their school career
Drawings of very preterm-born children at 5 years of age: a first impression of cognitive and motor development?
INTRODUCTION: The aim of this study was to examine differences in drawing skills between very preterm and term children, and to determine whether very preterm children's cognitive and motor development is reflected in the draw-a-person test (DAP) at age 5. Seventy-two very preterm children (birth weight <1,500 g and/or gestational age <32 weeks) and 60 term children at 5 years of age were compared on the DAP. Cognitive and motor skills of the very preterm children had been assessed four times, at 1/2, 1, 2, and 5 years of age. Very preterm children showed a developmental delay in drawing ability. Structural equation modeling revealed a positive relation between both cognitive as well as motor development and the DAP. CONCLUSION: The DAP could be a crude parameter for evaluating cognitive and motor deficits of very preterm children. A worrisome result should be followed by more standardized tests measuring cognitive and motor skill
Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies
A number of distinct methodologies are available for determining the oxygen isotope composition of minerals and rocks, these include laser-assisted fluorination, secondary ion mass spectrometry (SIMS)and UV laser ablation. In this review we focus on laser-assisted fluorination, which currently achieves the highest levels of precision available for oxygen isotope analysis. In particular, we examine how results using this method have furthered our understanding of early-formed differentiated meteorites. Due to its rapid reaction times and low blank levels, laser-assisted fluorination has now largely superseded the conventional externally-heated Ni “bomb” technique for bulk analysis. Unlike UV laser ablation and SIMS analysis, laser-assisted fluorination is not capable of focused spot analysis. While laser fluorination is now a mature technology, further analytical improvements are possible via refinements to the construction of sample chambers, clean-up lines and the use of ultra-high resolution mass spectrometers.
High-precision oxygen isotope analysis has proved to be a particularly powerful technique for investigating the formation and evolution of early-formed differentiated asteroids and has provided unique insights into the interrelationships between various groups of achondrites. A clear example of this is seenin samples that lie close to the terrestrial fractionation line (TFL). Based on the data from conventional oxygen isotope analysis, it was suggested that the main-group pallasites, the howardite eucrite diogenite suite (HEDs) and mesosiderites could all be derived from a single common parent body. However,high precision analysis demonstrates that main-group pallasites have a Δ17O composition that is fully resolvable from that of the HEDs and mesosiderites, indicating the involvement of at least two parent bodies. The range of Δ17O values exhibited by an achondrite group provides a useful means of assessing the extent to which their parent body underwent melting and isotopic homogenization. Oxygen isotope analysis can also highlight relationships between ungrouped achondrites and the more well-populated groups. A clear example of this is the proposed link between the evolved GRA 06128/9 meteorites and the brachinites.
The evidence from oxygen isotopes, in conjunction with that from other techniques, indicates that we have samples from approximately 110 asteroidal parent bodies (∼60 irons, ∼35 achondrites and stony-iron, and ∼15 chondrites) in our global meteorite collection. However, compared to the likely size of the original protoplanetary asteroid population, this is an extremely low value. In addition, almost all of the differentiated samples (achondrites, stony-iron and irons) are derived from parent bodies that were highly disrupted early in their evolution.
High-precision oxygen isotope analysis of achondrites provides some important insights into the origin of mass-independent variation in the early Solar System. In particular, the evidence from various primitive achondrite groups indicates that both the slope 1 (Y&R) and CCAM lines are of primordial significance. Δ17O differences between water ice and silicate-rich solids were probably the initial source of the slope 1 anomaly. These phases most likely acquired their isotopic composition as a result of UV photo-dissociation of CO that took place either in the early solar nebula or precursor giant molecular cloud. Such small-scale isotopic heterogeneities were propagated into larger-sized bodies, such as asteroids and planets, as a result of early Solar System processes, including dehydration, aqueous alteration,melting and collisional interactions
Atom lasers: production, properties and prospects for precision inertial measurement
We review experimental progress on atom lasers out-coupled from Bose-Einstein
condensates, and consider the properties of such beams in the context of
precision inertial sensing. The atom laser is the matter-wave analog of the
optical laser. Both devices rely on Bose-enhanced scattering to produce a
macroscopically populated trapped mode that is output-coupled to produce an
intense beam. In both cases, the beams often display highly desirable
properties such as low divergence, high spectral flux and a simple spatial mode
that make them useful in practical applications, as well as the potential to
perform measurements at or below the quantum projection noise limit. Both
devices display similar second-order correlations that differ from thermal
sources. Because of these properties, atom lasers are a promising source for
application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references
and figure
The Max b-HLH-LZ Can Transduce into Cells and Inhibit c-Myc Transcriptional Activities
The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs
Long-Term Neurodevelopmental Outcome of Monochorionic and Matched Dichorionic Twins
Contains fulltext :
79941.pdf (publisher's version ) (Open Access)BACKGROUND: Monochorionic (MC) twins are at increased risk for perinatal mortality and serious morbidity due to the presence of placental vascular anastomoses. Cerebral injury can be secondary to haemodynamic and hematological disorders during pregnancy (especially twin-to-twin transfusion syndrome (TTTS) or intrauterine co-twin death) or from postnatal injury associated with prematurity and low birth weight, common complications in twin pregnancies. We investigated neurodevelopmental outcome in MC and dichorionic (DC) twins at the age of two years. METHODS: This was a prospective cohort study. Cerebral palsy (CP) was studied in 182 MC infants and 189 DC infants matched for weight and age at delivery, gender, ethnicity of the mother and study center. After losses to follow-up, 282 of the 366 infants without CP were available to be tested with the Griffiths Mental Developmental Scales at 22 months corrected age, all born between January 2005 and January 2006 in nine perinatal centers in The Netherlands. Due to phenotypic (un)alikeness in mono-or dizygosity, the principal investigator was not blinded to chorionic status; perinatal outcome, with exception of co-twin death, was not known to the examiner. FINDINGS: Four out of 182 MC infants had CP (2.2%) - two of the four CP-cases were due to complications specific to MC twin pregnancies (TTTS and co-twin death) and the other two cases of CP were the result of cystic PVL after preterm birth - compared to one sibling of a DC twin (0.5%; OR 4.2, 95% CI 0.5-38.2) of unknown origin. Follow-up rate of neurodevelopmental outcome by Griffith's test was 76%. The majority of 2-year-old twins had normal developmental status. There were no significant differences between MC and DC twins. One MC infant (0.7%) had a developmental delay compared to 6 DC infants (4.2%; OR 0.2, 95% 0.0-1.4). Birth weight discordancy did not influence long-term outcome, though the smaller twin had slightly lower developmental scores than its larger co-twin. CONCLUSIONS: There were no significant differences in occurrence of cerebral palsy as well as neurodevelopmental outcome between MC and DC twins. Outcome of MC twins seems favourable in the absence of TTTS or co-twin death
Innovations in Doctoral Training and Research on Tinnitus:The European School on Interdisciplinary Tinnitus Research (ESIT) Perspective
Tinnitus is a common medical condition which interfaces many different disciplines, yet it is not a priority for any individual discipline. A change in its scientific understanding and clinical management requires a shift toward multidisciplinary cooperation, not only in research but also in training. The European School for Interdisciplinary Tinnitus research (ESIT) brings together a unique multidisciplinary consortium of clinical practitioners, academic researchers, commercial partners, patient organizations, and public health experts to conduct innovative research and train the next generation of tinnitus researchers. ESIT supports fundamental science and clinical research projects in order to: (1) advancing new treatment solutions for tinnitus, (2) improving existing treatment paradigms, (3) developing innovative research methods, (4) performing genetic studies on, (5) collecting epidemiological data to create new knowledge about prevalence and risk factors, (6) establishing a pan-European data resource. All research projects involve inter-sectoral partnerships through practical training, quite unlike anything that can be offered by any single university alone. Likewise, the postgraduate training curriculum fosters a deep knowledge about tinnitus whilst nurturing transferable competencies in personal qualities and approaches needed to be an effective researcher, knowledge of the standards, requirements and professionalism to do research, and skills to work with others and to ensure the wider impact of research. ESIT is the seed for future generations of creative, entrepreneurial, and innovative researchers, trained to master the upcoming challenges in the tinnitus field, to implement sustained changes in prevention and clinical management of tinnitus, and to shape doctoral education in tinnitus for the future
Electrically evoked compound action potentials are different depending on the site of cochlear stimulation.
One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties
Electrically evoked compound action potentials are different depending on the site of cochlear stimulation
One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties
ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe
- …