689 research outputs found

    Switching converters with wide DC conversion range

    Get PDF
    In dc-to-dc conversion applications that require a large range of input and/or output voltages, conventional PWM converter topologies must operate at extremely low duty ratios, which limits the operation to lower switching frequencies because of the minimum ON-time of the transistor switch. This is eliminated in a new class of single-transistor PWM converters featuring voltage conversion ratios with quadratic dependence on duty ratio. Practical circuit examples operating at 0.5 MHz are described

    A unified analysis of PWM converters in discontinuous modes

    Get PDF
    Three discontinuous operating modes of PWM (pulsewidth modulated) converters are considered: the discontinuous inductor current mode (DICM), the discontinuous capacitor voltage mode (DCVM), and a previously unidentified mode called the discontinuous quasi-resonant mode (DQRM). DC and small-signal AC analyses are applicable to all basic PWM converter topologies. Any particular topology is taken into account via its DC conversion ratio in the continuous conduction mode. The small-signal model is of the same order as the state-space averaged model for the continuous mode, and it offers improved predictions of the low-frequency dynamics of PWM converters in the discontinuous modes. It is shown that converters in discontinuous modes exhibit lossless damping similar to the effect of the current-mode programming

    Switching Flow-Graph nonlinear modeling technique

    Get PDF
    A unified graphical modeling technique, “Switching Flow-Graph” is developed to study the nonlinear dynamic behavior of pulse-width-modulated (PWM) switching converters. Switching converters are variable structure systems with linear subsystems. Each subsystem can be represented by a flow-graph. The Switching Flow-Graph is obtained by combining the flowgraphs of the subsystems through the use of switching branches. The Switching Flow-Graph model is easy to derive, and it provides a visual representation of a switching converter system. Experiments demonstrate that the Switching Flow-Graph model has very good accuracy

    A general approach to synthesis and analysis of quasi-resonant converters

    Get PDF
    A method for systematic synthesis of quasi-resonant (QR) topologies by addition of resonant elements to a parent pulse-width modulation (PWM) converter network is proposed. It is found that there are six QR classes with two resonant elements, including two novel classes. More complex QR converters can be generated by a recursive application of the synthesis method. Topological definitions of all known and novel QR classes follow directly from the synthesis method and topological properties of PWM parents. The synthesis of QR converters is augmented by a study of possible switch realizations and operating modes. In particular, it is demonstrated that a controllable rectifier can be used to accomplish the constant-frequency control in all QR classes. Links between the QR converters and the underlying PWM networks are extended to general DC and small-signal AC models in which the model of the PWM parent is explicitly exposed. Results of steady-state analyses of selected QR classes and operating modes include boundaries of operating regions, DC characteristics, a comparison of switching transitions and switch stresses, and a discussion of relevant design trade-offs

    One-cycle control of switching converters

    Get PDF
    A new large-signal nonlinear control technique is proposed to control the duty-ratio d of a switch such that in each cycle the average value of a switched variable of the switching converter is exactly equal to or proportional to the control reference in the steady-state or in a transient. One-cycle control rejects power source perturbations in one switching cycle; the average value of the switched variable follows the dynamic reference in one switching cycle; and the controller corrects switching errors in one switching cycle. There is no steady-state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with a constant frequency buck converter have demonstrated the robustness of the control method and verified the theoretical predictions. This new control method is very general and applicable to all types of pulse-width-modulated, resonant-based, or soft-switched switching converters for either voltage or current control in continuous or discontinuous conduction mode. Furthermore, it can be used to control any physical variable or abstract signal that is in the form of a switched variable or can be converted to the form of a switched variable

    Dynamics of one-cycle controlled Ćuk converters

    Get PDF
    One-cycle control is a nonlinear control method. The flow-graph modeling technique is employed to study the large-signal and small-signal dynamic behavior of one-cycle controlled switching converters. Systematic design method for one-cycle control systems is provided with the Ćuk converter as an example. Physical insight is given which explains how one-cycle control achieves instant control without infinite loop gain. Experimental results demonstrate that a Ćuk converter with one-cycle control reflects the power source perturbation in one-cycle and the average of the diode voltage follows the control reference in one cycle

    A three-switch high-voltage converter

    Get PDF
    A novel single active switch two-diodes high-voltage converter is presented. This converter can operate into a capacitor-diode voltage multiplier, which offers simpler structure and control, higher efficiency, reduced electromagnetic interference (EMI), and size and weight savings compared with traditional switched-mode regulated voltage multipliers. Two significant advantages are the continuous input current and easy isolation extension. The new converter is experimentally verified. Both the steady-state and dynamic theoretical models are correlated well with the experimental dat
    • …
    corecore