1,679 research outputs found

    Squeezed-light source for the superresolving microscopy

    Full text link
    We propose a source of multimode squeezed light that can be used for the superresolving microscopy beyond the standard quantum limit. This source is an optical parametric amplifier with a properly chosen diaphragm on its output and a Fourier lens. We demonstrate that such an arrangement produces squeezed prolate spheroidal waves which are the eigen modes of the optical imaging scheme used in microscopy. The degree of squeezing and the number of spatial modes in illuminating light, necessary for the effective object field reconstruction, are evaluatedComment: 6 pages, 1 figure, RevTeX4. Shortened version will appear in Optics Letter

    Direct Measurement of Kirkwood-Rihaczek distribution for spatial properties of coherent light beam

    Full text link
    We present direct measurement of Kirkwood-Rihaczek (KR) distribution for spatial properties of coherent light beam in terms of position and momentum (angle) coordinates. We employ a two-local oscillator (LO) balanced heterodyne detection (BHD) to simultaneously extract distribution of transverse position and momentum of a light beam. The two-LO BHD could measure KR distribution for any complex wave field (including quantum mechanical wave function) without applying tomography methods (inverse Radon transformation). Transformation of KR distribution to Wigner, Glauber Sudarshan P- and Husimi or Q- distributions in spatial coordinates are illustrated through experimental data. The direct measurement of KR distribution could provide local information of wave field, which is suitable for studying particle properties of a quantum system. While Wigner function is suitable for studying wave properties such as interference, and hence provides nonlocal information of the wave field. The method developed here can be used for exploring spatial quantum state for quantum mapping and computing, optical phase space imaging for biomedical applications.Comment: 27 pages, 14 figure

    Quantum limits of super-resolution in reconstruction of optical objects

    Full text link
    We investigate analytically and numerically the role of quantum fluctuations in reconstruction of optical objects from diffraction-limited images. Taking as example of an input object two closely spaced Gaussian peaks we demonstrate that one can improve the resolution in the reconstructed object over the classical Rayleigh limit. We show that the ultimate quantum limit of resolution in such reconstruction procedure is determined not by diffraction but by the signal-to-noise ratio in the input object. We formulate a quantitative measure of super-resolution in terms of the optical point-spread function of the system.Comment: 23 pages, 7 figures. Submitted to Physical Review A e-mail: [email protected]
    • …
    corecore