41 research outputs found

    A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles.

    Get PDF
    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system

    Effects of electrical stimulation of dorsal raphe nucleus on neuronal response properties of barrel cortex layer IV neurons following long-term sensory deprivation

    Get PDF
    Abstract: Objective To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation. Methods: Male Wistar rats were divided into sensory-deprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8-10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection. Results: PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups. Conclusion: These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex

    Suboptimal Exposure to Anti-TB Drugs in a TBM/HIV+ Population Is Not Related to Antiretroviral Therapy.

    Get PDF
    A placebo-controlled trial that compares the outcomes of immediate vs. deferred initiation of antiretroviral therapy in HIV +ve tuberculous meningitis (TBM) patients was conducted in Vietnam in 2011. Here, the pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol were investigated in the presence and absence of anti-HIV treatment in 85 patients. Pharmacokinetic analyses show that HIV therapy has no significant impact on the pharmacokinetics of TB drugs in this cohort. The same population, however, displayed generally low cerebrospinal fluid (CSF) and systemic exposures to rifampicin compared to previously reported HIV -ve cohorts. Elevated CSF concentrations of pyrazinamide, on the other hand, were strongly and independently correlated with increased mortality and neurological toxicity. The findings suggest that the current standard dosing regimens may put the patient at risk of treatment failure from suboptimal rifampicin exposure, and potentially increasing the risk of adverse central nervous system events that are independently correlated with pyrazinamide CSF exposure.The Wellcome Trust (UK) provided funding for the study but did not play a role in the design of the study or in the collection/interpretation of the data

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Early terminal complement blockade and C6 deficiency are protective in enterohemorrhagic Escherichia coli-infected mice

    No full text
    Complement activation occurs during enterohemorrhagic Escherichia coli (EHEC) infection and may exacerbate renal manifestations. In this study, we show glomerular C5b-9 deposits in the renal biopsy of a child with EHEC-associated hemolytic uremic syndrome. The role of the terminal complement complex, and its blockade as a therapeutic modality, was investigated in a mouse model of E. coli O157:H7 infection. BALB/c mice were treated with monoclonal anti-C5 i.p. on day 3 or 6 after intragastric inoculation and monitored for clinical signs of disease and weight loss for 14 d. All infected untreated mice (15 of 15) or those treated with an irrelevant Ab (8 of 8) developed severe illness. In contrast, only few infected mice treated with anti-C5 on day 3 developed symptoms (three of eight, p < 0.01 compared with mice treated with the irrelevant Ab on day 3) whereas most mice treated with anti-C5 on day 6 developed symptoms (six of eight). C6-deficient C57BL/6 mice were also inoculated with E. coli O157:H7 and only 1 of 14 developed disease, whereas 10 of 16 wild-type mice developed weight loss and severe disease (p < 0.01). Complement activation via the terminal pathway is thus involved in the development of disease in murine EHEC infection. Early blockade of the terminal complement pathway, before the development of symptoms, was largely protective, whereas late blockade was not. Likewise, lack of C6, and thereby deficient terminal complement complex, was protective in murine E. coli O157:H7 infection

    Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism

    No full text
    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli (EHEC), that cause gastrointestinal infection leading to hemolytic uremic syndrome. The aim of this study was to investigate if Stx signals via ATP and if blockade of purinergic receptors could be protective. Stx induced ATP release from HeLa cells and in a mouse model. Toxin induced rapid calcium influx into HeLa cells, as well as platelets, and a P2X1 receptor antagonist, NF449, abolished this effect. Likewise, the P2X antagonist suramin blocked calcium influx in Hela cells. NF449 did not affect toxin intracellular retrograde transport, however, cells pre-treated with NF449 exhibited significantly higher viability after exposure to Stx for 24 hours, compared to untreated cells. NF449 protected HeLa cells from protein synthesis inhibition and from Stx-induced apoptosis, assayed by caspase 3/7 activity. The latter effect was confirmed by P2X1 receptor silencing. Stx induced the release of toxin-positive HeLa cell- and platelet-derived microvesicles, detected by flow cytometry, an effect significantly reduced by NF449 or suramin. Suramin decreased microvesicle levels in mice injected with Stx or inoculated with Stx-producing EHEC. Taken together, we describe a novel mechanism of Stx-mediated cellular injury associated with ATP signaling and inhibited by P2X receptor blockade

    Traits of dominant plant species drive normalized difference vegetation index in grasslands globally

    Get PDF
    Aim:Theoretical, experimental and observational studies have shown that biodiversity-ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non-exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small-extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world-wide. Location: Two thousand nine hundred and forty-one grassland plots globally.Time period:2000-2014.Major taxa studied: Vascular plants. Methods: We obtained plot-based data on functional community structure from the global vegetation plot database "sPlot", which combines species composition with plant trait data from the "TRY" database. We used data on the community-weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite-derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. Results: Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities. Main conclusions: Our analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale
    corecore