126 research outputs found
Investigating data-flow coverage of classes using evolutionary algorithms
It is not unusual for a software development organization to expend 40% of total project effort on testing, which call be a very laborious and time-consuming process. Therefore, there is a big necessity for test automation. This paper describes an approach to automatically generate test-data for 00 software exploiting a Genetic Algorithm (GA) to achieve high levels of data-flow (d-u) coverage. A proof-of-concept tool is presented. The experimental results from testing six Java classes helped us identify three categories of problematic test targets, and suggest that in the future full d-u coverage with a reasonable computational cost may be possible if we overcome these obstacles
Dynamic Programmable Wireless Environment with UAV-mounted Static Metasurfaces
Reconfigurable intelligent surfaces (RISs) are artificial planar structures
able to offer a unique way of manipulating propagated wireless signals.
Commonly composed of a number of reconfigurable passive cell components and
basic electronic circuits, RISs can almost freely perform a set of wave
modification functionalities, in order to realize programmable wireless
environments (PWEs). However, a more energy-efficient way to realize a PWE is
through dynamically relocating static metasurfaces that perform a unique
functionality. In this paper, we employ a UAV swarm to dynamically deploy a set
of lowcost passive metasurfaces that are able to perform only one
electromagnetic functionality, but with the benefit of requiring no power.
Specifically, the UAV-mounted static metasurfaces are carefully positioned
across the sky to create cascaded channels for improved user service and
security hardening. The performance evaluation results, based o
From social machines to social protocols:Software engineering foundations for sociotechnical systems
The overarching vision of social machines is to facilitate social processes by having computers provide administrative support. We conceive of a social machine as a sociotechnical system (STS): a software-supported system in which autonomous principals such as humans and organizations interact to exchange information and services. Existing approaches for social machines emphasize the technical aspects and inadequately support the meanings of social processes, leaving them informally realized in human interactions. We posit that a fundamental rethinking is needed to incorporate accountability, essential for addressing the openness of the Web and the autonomy of its principals. We introduce Interaction-Oriented Software Engineering (IOSE) as a paradigm expressly suited to capturing the social basis of STSs. Motivated by promoting openness and autonomy, IOSE focuses not on implementation but on social protocols, specifying how social relationships, characterizing the accountability of the concerned parties, progress as they interact. Motivated by providing computational support, IOSE adopts the accountability representation to capture the meaning of a social machine’s states and transitions. We demonstrate IOSE via examples drawn from healthcare. We reinterpret the classical software engineering (SE) principles for the STS setting and show how IOSE is better suited than traditional software engineering for supporting social processes. The contribution of this paper is a new paradigm for STSs, evaluated via conceptual analysis
ABSense: Sensing Electromagnetic Waves on Metasurfaces via Ambient Compilation of Full Absorption
Metasurfaces constitute effective media for manipulating and transforming
impinging EM waves. Related studies have explored a series of impactful MS
capabilities and applications in sectors such as wireless communications,
medical imaging and energy harvesting. A key-gap in the existing body of work
is that the attributes of the EM waves to-be-controlled (e.g., direction,
polarity, phase) are known in advance. The present work proposes a practical
solution to the EM wave sensing problem using the intelligent and networked MS
counterparts-the HyperSurfaces (HSFs), without requiring dedicated field
sensors. An nano-network embedded within the HSF iterates over the possible MS
configurations, finding the one that fully absorbs the impinging EM wave, hence
maximizing the energy distribution within the HSF. Using a distributed
consensus approach, the nano-network then matches the found configuration to
the most probable EM wave traits, via a static lookup table that can be created
during the HSF manufacturing. Realistic simulations demonstrate the potential
of the proposed scheme. Moreover, we show that the proposed workflow is the
first-of-its-kind embedded EM compiler, i.e., an autonomic HSF that can
translate high-level EM behavior objectives to the corresponding, low-level EM
actuation commands.Comment: Publication: Proceedings of ACM NANOCOM 2019. This work was funded by
the European Union via the Horizon 2020: Future Emerging Topics call
(FETOPEN), grant EU736876, project VISORSURF (http://www.visorsurf.eu
XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges
We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES,
which seeks to offer naturally low-latency operation and cost-effectiveness,
overcoming the critical scalability issues faced by existing solutions.
iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in
wireless communications. Empowered by intelligent (meta)surfaces, PWEs
transform the wave propagation phenomenon into a software-defined process. We
leverage PWEs to i) create, and then ii) selectively copy the scattered RF
wavefront of an object from one location in space to another, where a machine
learning module, accelerated by FPGAs, translates it to visual input for an XR
headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR
system whose operation is bounded in the physical layer and, hence, has the
prospects for minimal end-to-end latency. Over large distances,
RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The
paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A
proof-of-concept implementation via simulations is provided, demonstrating the
reconstruction of challenging objects in iCOPYWAVES produced computer graphics
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
© 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …