65 research outputs found

    MMASS: an optimized array-based method for assessing CpG island methylation

    Get PDF
    We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation

    Epigenetic Changes of CXCR4 and Its Ligand CXCL12 as Prognostic Factors for Sporadic Breast Cancer

    Get PDF
    Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%). Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a biomarker for prognosis in breast cancer

    Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CXCL12 is a chemokine that is constitutively expressed in many organs and tissues. <it>CXCL12 </it>promoter hypermethylation has been detected in primary breast tumours and contributes to their metastatic potential. It has been shown that the oestrogen receptor α (<it>ESR1</it>) gene can also be silenced by DNA methylation. In this study, we used methylation-specific PCR (MSP) to analyse the methylation status in two regions of the <it>CXCL12 </it>promoter and <it>ESR1 </it>in tumour cell lines and in primary breast tumour samples, and correlated our results with clinicopathological data.</p> <p>Methods</p> <p>First, we analysed <it>CXCL12 </it>expression in breast tumour cell lines by RT-PCR. We also used 5-aza-2'-deoxycytidine (5-aza-CdR) treatment and DNA bisulphite sequencing to study the promoter methylation for a specific region of <it>CXCL12 </it>in breast tumour cell lines. We evaluated <it>CXCL12 </it>and <it>ESR1 </it>methylation in primary tumour samples by methylation-specific PCR (MSP). Finally, promoter hypermethylation of these genes was analysed using Fisher's exact test and correlated with clinicopathological data using the Chi square test, Kaplan-Meier survival analysis and Cox regression analysis.</p> <p>Results</p> <p><it>CXCL12 </it>promoter hypermethylation in the first region (island 2) and second region (island 4) was correlated with lack of expression of the gene in tumour cell lines. In the primary tumours, island 2 was hypermethylated in 14.5% of the samples and island 4 was hypermethylated in 54% of the samples. The <it>ESR1 </it>promoter was hypermethylated in 41% of breast tumour samples. In addition, the levels of ERα protein expression diminished with increased frequency of <it>ESR1 </it>methylation (p < 0.0001). This study also demonstrated that <it>CXCL12 </it>island 4 and <it>ESR1 </it>methylation occur simultaneously at a high frequency (p = 0.0220).</p> <p>Conclusions</p> <p>This is the first study showing a simultaneous involvement of epigenetic regulation for both <it>CXCL12 </it>and <it>ESR1 </it>genes in Brazilian women. The methylation status of both genes was significantly correlated with histologically advanced disease, the presence of metastases and death. Therefore, the methylation pattern of these genes could be used as a molecular marker for the prediction of breast cancer outcome.</p

    A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities

    Get PDF
    The Dobzhansky-Muller (D-M) model of speciation by genic incompatibility is widely accepted as the primary cause of interspecific postzygotic isolation. Since the introduction of this model, there have been theoretical and experimental data supporting the existence of such incompatibilities. However, speciation genes have been largely elusive, with only a handful of candidate genes identified in a few organisms. The Saccharomyces sensu stricto yeasts, which have small genomes and can mate interspecifically to produce sterile hybrids, are thus an ideal model for studying postzygotic isolation. Among them, only a single D-M pair, comprising a mitochondrially targeted product of a nuclear gene and a mitochondrially encoded locus, has been found. Thus far, no D-M pair of nuclear genes has been identified between any sensu stricto yeasts. We report here the first detailed genome-wide analysis of rare meiotic products from an otherwise sterile hybrid and show that no classic D-M pairs of speciation genes exist between the nuclear genomes of the closely related yeasts S. cerevisiae and S. paradoxus. Instead, our analyses suggest that more complex interactions, likely involving multiple loci having weak effects, may be responsible for their post-zygotic separation. The lack of a nuclear encoded classic D-M pair between these two yeasts, yet the existence of multiple loci that may each exert a small effect through complex interactions suggests that initial speciation events might not always be mediated by D-M pairs. An alternative explanation may be that the accumulation of polymorphisms leads to gamete inviability due to the activities of anti-recombination mechanisms and/or incompatibilities between the species' transcriptional and metabolic networks, with no single pair at least initially being responsible for the incompatibility. After such a speciation event, it is possible that one or more D-M pairs might subsequently arise following isolation

    Reductions in ozone at high concentrations of stratospheric halogens

    Full text link
    An increase in the concentration of inorganic chlorine to levels comparable to that of oxidized reactive nitrogen could cause a significant change in the chemistry of the lower stratosphere leading to a reduction potentially larger than 15% in the column density of ozone. This could occur, for example by the middle of the next century, if emissions of man-made chlorocarbons were to grow at a rate of 3% per year. Ozone could be further depressed by release of industrial bromocarbon

    Research and Innovation for and with Adolescent Young Carers to Influence Policy and Practice—The European Union Funded “ME-WE” Project

    Get PDF
    Young carers are children and adolescents who provide care to other family members or friends, taking over responsibilities that are usually associated with adulthood. There is emerging but still scarce knowledge worldwide about the phenomenon of young carers and the impact of a caring role on their health, social and personal development spheres. This paper provides an overview of the main results from the ME-WE project, which is the first European research and innovation project dedicated to adolescent young carers (AYCs) (15–17 years). The project methods relied on three main activities: (1) a systematization of knowledge (by means of a survey to AYCs, country case studies, Delphi study, literature review); (2) the co-design, implementation and evaluation of a primary prevention intervention addressing AYCs’ mental health (by means of Blended Learning Networks and a clinical trial in six European countries); (3) the implementation of knowledge translation actions for dissemination, awareness, advocacy and lobbying (by means of national and international stakeholder networks, as well as traditional and new media). Project results substantially contributed to a better understanding of AYCs’ conditions, needs and preferences, defined tailored support intervention (resilient to COVID-19 related restrictions), and significant improvements in national and European policies for AYCs

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore