36 research outputs found

    Distinct ligand binding sites in integrin α3β1 regulate matrix adhesion and cell–cell contact

    Get PDF
    The integrin α3β1 mediates cellular adhesion to the matrix ligand laminin-5. A second integrin ligand, the urokinase receptor (uPAR), associates with α3β1 via a surface loop within the α3 β-propeller (residues 242–246) but outside the laminin binding region, suggesting that uPAR–integrin interactions could signal differently from matrix engagement. To explore this, α3−/− epithelial cells were reconstituted with wild-type (wt) α3 or α3 with Ala mutations within the uPAR-interacting loop (H245A or R244A). Wt or mutant-bearing cells showed comparable expression and adhesion to laminin-5. Cells expressing wt α3 and uPAR dissociated in culture, with increased Src activity, up-regulation of SLUG, and down-regulation of E-cadherin and γ-catenin. Src kinase inhibition or expression of Src 1–251 restored the epithelial phenotype. The H245A and R244A mutants were unaffected by coexpression of uPAR. We conclude that α3β1 regulates both cell–cell contact and matrix adhesion, but through distinct protein interaction sites within its β-propeller. These studies reveal an integrin- and Src-dependent pathway for SLUG expression and mesenchymal transition

    Regulation of α5β1 integrin conformation and function by urokinase receptor binding

    Get PDF
    Urokinase-type plasminogen activator receptors (uPARs), up-regulated during tumor progression, associate with β1 integrins, localizing urokinase to sites of cell attachment. Binding of uPAR to the β-propeller of α3β1 empowers vitronectin adhesion by this integrin. How uPAR modifies other β1 integrins remains unknown. Using recombinant proteins, we found uPAR directly binds α5β1 and rather than blocking, renders fibronectin (Fn) binding by α5β1 Arg-Gly-Asp (RGD) resistant. This resulted from RGD-independent binding of α5β1–uPAR to Fn type III repeats 12–15 in addition to type III repeats 9–11 bound by α5β1. Suppression of endogenous uPAR by small interfering RNA in tumor cells promoted weaker, RGD-sensitive Fn adhesion and altered overall α5β1 conformation. A β1 peptide (res 224NLDSPEGGF232) that models near the known α-chain uPAR-binding region, or a β1-chain Ser227Ala point mutation, abrogated effects of uPAR on α5β1. Direct binding and regulation of α5β1 by uPAR implies a modified “bent” integrin conformation can function in an alternative activation state with this and possibly other cis-acting membrane ligands

    Group Polarization in the Team Dictator Game reconsidered

    Get PDF
    While most papers on team decision-making find teams to behave more selfish, less trusting and less altruistic than individuals, Cason and Mui (1997) report that teams are more altruistic than individuals in a dictator game. Using a within-subjects design we re-examine group polarization by letting subjects make individual as well as team decisions in an experimental dictator game. In our experiment teams are more selfish than individuals, and the most selfish team member has the strongest influence on team decisions. Various sources of the different findings in Cason and Mui (1997) and in our paper are discussed

    Integrin α3β1–dependent β-catenin phosphorylation links epithelial Smad signaling to cell contacts

    Get PDF
    Injury-initiated epithelial to mesenchymal transition (EMT) depends on contextual signals from the extracellular matrix, suggesting a role for integrin signaling. Primary epithelial cells deficient in their prominent laminin receptor, α3β1, were found to have a markedly blunted EMT response to TGF-β1. A mechanism for this defect was explored in α3-null cells reconstituted with wild-type (wt) α3 or point mutants unable to engage laminin 5 (G163A) or epithelial cadherin (E-cadherin; H245A). After TGF-β1 stimulation, wt epithelial cells but not cells expressing the H245A mutant internalize complexes of E-cadherin and TGF-β1 receptors, generate phospho-Smad2 (p-Smad2)–pY654–β-catenin complexes, and up-regulate mesenchymal target genes. Although Smad2 phosphorylation is normal, p-Smad2–pY654–β-catenin complexes do not form in the absence of α3 or when α3β1 is mainly engaged on laminin 5 or E-cadherin in adherens junctions, leading to attenuated EMT. These findings demonstrate that α3β1 coordinates cross talk between β-catenin and Smad signaling pathways as a function of extracellular contact cues and thereby regulates responses to TGF-β1 activation

    Integrative Network Biology: Graph Prototyping for Co-Expression Cancer Networks

    Get PDF
    Network-based analysis has been proven useful in biologically-oriented areas, e.g., to explore the dynamics and complexity of biological networks. Investigating a set of networks allows deriving general knowledge about the underlying topological and functional properties. The integrative analysis of networks typically combines networks from different studies that investigate the same or similar research questions. In order to perform an integrative analysis it is often necessary to compare the properties of matching edges across the data set. This identification of common edges is often burdensome and computational intensive. Here, we present an approach that is different from inferring a new network based on common features. Instead, we select one network as a graph prototype, which then represents a set of comparable network objects, as it has the least average distance to all other networks in the same set. We demonstrate the usefulness of the graph prototyping approach on a set of prostate cancer networks and a set of corresponding benign networks. We further show that the distances within the cancer group and the benign group are statistically different depending on the utilized distance measure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore