140 research outputs found

    High resolution angle resolved photoemission studies on quasi-particle dynamics in graphite

    Full text link
    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is ~0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alpha-1 antitrypsin (AAT) is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT) gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD) mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA).</p> <p>Methods</p> <p>DBA/1 mice were immunized with bovine type II collagen (bCII) to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT). Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF), antibodies against both bovine (bCII) and mouse collagen II (mCII) were tested by ELISA.</p> <p>Results</p> <p>Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8)-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially.</p> <p>Conclusion</p> <p>These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.</p

    Nature-derived epigallocatechin gallate/duck’s feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration

    Get PDF
    Scaffolds mimicking structural and chemical characteristics of the native bone tissues are critical for bone tissue engineering. Herein, we have developed and characterized epigallocatechin gallate/duck's feet collagen/hydroxyapatite (EGCG/DC/HAp) composite sponges that enhanced the bone tissue regeneration. The three-dimensional composite sponges were synthesized by loading various amounts (i.e. 1, 5 and 10 μM) of EGCG to duck feet derived collagen followed by freeze-drying and then coating with hydroxyapatite. Several measuremental techniques were employed to examine the properties of the as-fabricated composite sponges including morphology and structure, porosity, compressive strength, etc. and as well compared with pristine duck feet derived collagen. SEM observations of EGCG/DC/HAp sponges showed the formation of a highly porous collagen matrix with EGCG embodiment. The porosity and pore size of sponges were found to increase by high EGCG content. The compressive strength was calculated as 3.54 ± 0.04, 3.63 ± 0.03, 3.89 ± 0.05, 4.047 ± 0.05 MPa for 1, 5 and 10 μM EGCG/DC/HAp sponges, respectively. Osteoblast-like cell (BMSCs isolated from rabbit) culture and in vivo experiments with EGCG/DC/HAp sponges implanted in nude mouse followed by histological staining showed enhanced cell internalization and attachment, cell proliferation, alkaline phosphatase expressions, indicating that EGCG/DC/HAp sponges have ahigh biocompatibility. Moreover, highEGCG content in the EGCG/DC/HAp sponges have led to increased cellular behavior. Collectively, the 5 μM of EGCG/DC/HAp sponges were suggested as the potential candidates for bone tissue regeneration.This research was supported by Technology Commercialization Support Program [grant number 814005-03-3-HD020], MIFAFF; and Basic Science Research Program [grant number NRF2017R1A2B3010270] through the National Research Foundation of Korea, Ministry of Science, ICT and Future Planning, Republic of Korea.info:eu-repo/semantics/publishedVersio

    Incidence Rate for Hantavirus Infections without Pulmonary Syndrome, Panama

    Get PDF
    During 2001–2007, to determine incidence of all hantavirus infections, including those without pulmonary syndrome, in western Panama, we conducted 11 communitywide surveys. Among 1,129 persons, antibody prevalence was 16.5%–60.4%. Repeat surveys of 476 found that patients who seroconverted outnumbered patients with hantavirus pulmonary syndrome by 14 to 1

    The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

    Get PDF
    BACKGROUND: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins. CONCLUSION/SIGNIFICANCE: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs

    Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance

    Get PDF
    Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants

    Integrative and Comparative Genomic Analysis of Lung Squamous Cell Carcinomas in East Asian Patients

    Get PDF
    Lung squamous cell carcinoma (SCC) is the second most prevalent type of lung cancer. Currently, no targeted therapeutics are approved for treatment of this cancer, largely because of a lack of systematic understanding of the molecular pathogenesis of the disease. To identify therapeutic targets and perform comparative analyses of lung SCC, we probed somatic genome alterations of lung SCC by using samples from Korean patients

    Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague–Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE(2) and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE(2) in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE(2) and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13020-016-0089-6) contains supplementary material, which is available to authorized users

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore