353 research outputs found

    Taxonomic indexing—extending the role of taxonomy

    Get PDF
    Author Posting. © Society of Systematic Biologists, 2006. This article is posted here by permission of Society of Systematic Biologists for personal use, not for redistribution. The definitive version was published in Systematic Biology 55 (2006): 367-373, doi: 10.1080/10635150500541680.Taxonomic indexing refers to a new array of taxonomically intelligent network services that use nomenclatural principles and elements of expert taxonomic knowledge to manage information about organisms. Taxonomic indexing was introduced to help manage the increasing amounts of digital information about biology. It has been designed to form a near basal layer in a layered cyberinfrastructure that deals with biological information. Taxonomic Indexing accommodates the special problems of using names of organisms to index biological material. It links alternative names for the same entity (reconciliation), and distinguishes between uses of the same name for different entities (disambiguation), and names are placed within an indefinite number of hierarchical schemes. In order to access all information on all organisms, Taxonomic indexing must be able to call on a registry of all names in all forms for all organisms. NameBank has been developed to meet that need. Taxonomic indexing is an area of informatics that overlaps with taxonomy, is dependent on the expert input of taxonomists, and reveals the relevance of the discipline to a wide audience

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    Form–function relationships in a marine foundation species depend on scale:A shoot to global perspective from a distributed ecological experiment

    Get PDF
    Form–function relationships in plants underlie their ecosystem roles in supporting higher trophic levels through primary production, detrital pathways, and habitat provision. For widespread, phenotypically-variable plants, productivity may differ not only across abiotic conditions, but also from distinct morphological or demographic traits. A single foundation species, eelgrass Zostera marina, typically dominates north temperate seagrass meadows, which we studied across 14 sites spanning 32–61°N latitude and two ocean basins. Body size varied by nearly two orders of magnitude through this range, and was largest at mid-latitudes and in the Pacific Ocean. At the global scale, neither latitude, site-level environmental conditions, nor body size helped predict productivity (relative growth rate 1–2% day-1 at most sites), suggesting a remarkable capacity of Z. marina to achieve similar productivity in summer. Furthermore, among a suite of stressors applied within sites, only ambient leaf damage reduced productivity; grazer reduction and nutrient addition had no effect on eelgrass size or growth. Scale-dependence was evident in different allometric relationships within and across sites for productivity and for modules (leaf count) relative to size. Zostera marina provides a range of ecosystem functions related to both body size (habitat provision, water flow) and growth rates (food, carbon dynamics). Our observed decoupling of body size and maximum production suggests that geographic variation in these ecosystem functions may be independent, with a future need to resolve how local adaptation or plasticity of body size might actually enable more consistent peak productivity across disparate environmental conditions

    Renormalized Coupled Cluster Approaches in the Cluster-in-Molecule Framework: Predicting Vertical Electron Binding Energies of the Anionic Water Clusters (H2O)n–

    Get PDF
    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Interoception and psychopathology: A developmental neuroscience perspective

    Get PDF
    Interoception refers to the perception of the physiological condition of the body, including hunger, temperature, and heart rate. There is a growing appreciation that interoception is integral to higher-order cognition. Indeed, existing research indicates an association between low interoceptive sensitivity and alexithymia (a difficulty identifying one’s own emotion), underscoring the link between bodily and emotional awareness. Despite this appreciation, the developmental trajectory of interoception across the lifespan remains under-researched, with clear gaps in our understanding. This qualitative review and opinion paper provides a brief overview of interoception, discussing its relevance for developmental psychopathology, and highlighting measurement issues, before surveying the available work on interoception across four stages of development: infancy, childhood, adolescence and late adulthood. Where gaps in the literature addressing the development of interoception exist, we draw upon the association between alexithymia and interoception, using alexithymia as a possible marker of atypical interoception. Evidence indicates that interoceptive ability varies across development, and that this variance correlates with established age-related changes in cognition and with risk periods for the development of psychopathology. We suggest a theory within which atypical interoception underlies the onset of psychopathology and risky behaviour in adolescence, and the decreased socio-emotional competence observed in late adulthood
    corecore