163 research outputs found

    Production and characterization of antimicrobials from isolate Pantoea agglomerans of Medicago sativa plant rhizosphere soil

    Get PDF
    Due to rise in drug resistance among pathogens, there is always an urge to look for new drug alternatives. So in this study we aimed to identify the unexplored rhizosphere microflora of alfalfa plant for new antimicrobials. With initial screening for isolates from rhizosphere region for antibacterial activity against selected bacterial pathogens, the isolate AL10 had better activity selected for this study. The isolate mass was cultured and secondary metabolites were extracted using ethyl acetate and subjected to FTIR and GC-MS analysis. Based on functional diversity analysis, the isolate subjected to anti-bacterial activity revealed significant activity against Streptococcus pneumonia, Klebsiella, S. aureus with zone of inhibition in the range of18-20 mm. Based on GC-MS analysis report ten compounds were identified and 1-Octadecane and 1-nonadecanol were found to be responsible for bio-activity. FT-IR results showed that N-H stretching functional group was dominantly present in the extract. Molecular identification of the isolate by 16S rRNA sequencing showed the isolate as Pantoea agglomerans. The results showed that the isolate P.agglomerans, gram negative bacteria had wide antibacterial activity due to 1-Octadecane and 1-nonadecanol. Though Alfalfa plant has been described for various biological activities, this is a first report on rhizosphere region of plant reporting for antibacterial potential microbes

    Na-K-Cl Cotransporter-1 as a Regulator of Manganese-induced Astrocyte Swelling

    Get PDF
    Astrocyte swelling leads to brain edema, intracranial pressure, brain herniation and acute liver failure (fulminant hepatic failure) which is the major cause of death in this condition. Manganese has been strongly implicated as an important factor in astrocyte swelling. Manganese in excess is neurotoxic and causes a CNS disorder that resembles  Parkinson¡¦s disease (manganism). Manganese highly accumulates in astrocytes, which renders these cells more vulnerable to its toxicity. In addition to manganism, increased brain levels of manganese have been found in hepatic encephalopathy. Manganese is known to cause cellswelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter-1 (NKCC1) has been shown to be involved in cell swelling in several neurological disorders.We therefore examined the effect of manganese on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to manganese (50 µM), and NKCC activity was measured. Manganese increased NKCC activity at 24 h. Inhibition of this  activity by bumetanide diminished manganese-induced astrocyte swelling.  Manganese (Mn) also increased total as well as phosphorylated NKCC1. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by manganese and that such activation appears to be mediated by NKCC1 abundance

    Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases

    Get PDF
    Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker discovery including neuroimaging to therapeutic applications for degenerative, inflammatory and infectious disorders of the nervous system. This review focuses on the current and future potential of the field to positively affect clinical outcomes. From the Clinical Editor Many nervous system disorders remain unresolved clinical problems. In many cases, drug agents simply cannot cross the blood-brain barrier (BBB) into the nervous system. The advent of nanomedicines can enhance the delivery of biologically active molecules for targeted therapy and imaging. This review focused on the use of nanotechnology for degenerative, inflammatory, and infectious diseases in the nervous system

    Unusual and tunable negative linear compressibility in the metal–organic framework MFM-133(M)(M = Zr, Hf)

    Get PDF
    High pressure single-crystal X-ray structural analyses of isostructural MFM-133(M) (M = Zr, Hf) of flu topology and incorporating the tetracarboxylate ligand TCHB4– [H4TCHB = 3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-biphenyl] and {M6(μ-OH)8(OH)8(COO)8} clusters, confirm negative linear compressibility (NLC) behavior along the c axis. This occurs via a three-dimensional winerack NLC mechanism leading to distortion of the octahedral cage towards a more elongated polyhedron under static compression. Despite the isomorphous nature of these two structures, MFM-133(Hf) shows a higher degree of NLC than the Zr(IV) analogue. Thus, for the first time, we demonstrate here that the NLC property can be effectively tuned in a framework material by simply varying the inorganic component of the frameworks without changing the network topology and structure

    TRAIL promotes caspase-dependent pro-inflammatory responses via PKCδ activation by vascular smooth muscle cells

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is best known for its selective cytotoxicity against transformed tumor cells. Most non-transformed primary cells and several cancer cell lines are not only resistant to death receptor-induced apoptosis, but also subject to inflammatory responses in a nuclear factor-κB (NF-κB)-dependent manner. Although the involvement of TRAIL in a variety of vascular disorders has been proposed, the exact molecular mechanisms are unclear. Here, we aimed to delineate the role of TRAIL in inflammatory vascular response. We also sought possible molecular mechanisms to identify potential targets for the prevention and treatment of post-angioplastic restenosis and atherosclerosis. Treatment with TRAIL increased the expression of intercellular adhesion molecule-1 by primary human vascular smooth muscle cells via protein kinase C (PKC)δ and NF-κB activation. Following detailed analysis using various PKCδ mutants, we determined that PKCδ activation was mediated by caspase-dependent proteolysis. The protective role of PKCδ was further confirmed in post-traumatic vascular remodeling in vivo. We propose that the TRAIL/TRAIL receptor system has a critical role in the pathogenesis of inflammatory vascular disorders by transducing pro-inflammatory signals via caspase-mediated PKCδ cleavage and subsequent NF-κB activation

    Alteration in Superoxide Dismutase 1 Causes Oxidative Stress and p38 MAPK Activation Following RVFV Infection

    Get PDF
    Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV). RVFV is a category A pathogen that belongs to the genus Phlebovirus, family Bunyaviridae. Understanding early host events to an infectious exposure to RVFV will be of significant use in the development of effective therapeutics that not only control pathogen multiplication, but also contribute to cell survival. In this study, we have carried out infections of human cells with a vaccine strain (MP12) and virulent strain (ZH501) of RVFV and determined host responses to viral infection. We demonstrate that the cellular antioxidant enzyme superoxide dismutase 1 (SOD1) displays altered abundances at early time points following exposure to the virus. We show that the enzyme is down regulated in cases of both a virulent (ZH501) and a vaccine strain (MP12) exposure. Our data demonstrates that the down regulation of SOD1 is likely to be due to post transcriptional processes and may be related to up regulation of TNFα following infection. We also provide evidence for extensive oxidative stress in the MP12 infected cells. Concomitantly, there is an increase in the activation of the p38 MAPK stress response, which our earlier published study demonstrated to be an essential cell survival strategy. Our data suggests that the viral anti-apoptotic protein NSm may play a role in the regulation of the cellular p38 MAPK response. Alterations in the host protein SOD1 following RVFV infection appears to be an early event that occurs in multiple cell types. Activation of the cellular stress response p38 MAPK pathway can be observed in all cell types tested. Our data implies that maintaining oxidative homeostasis in the infected cells may play an important role in improving survival of infected cells

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore