11 research outputs found

    Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation

    Get PDF
    SummaryThe Roquin-1 protein binds to messenger RNAs (mRNAs) and regulates gene expression posttranscriptionally. A single point mutation in Roquin-1, but not gene ablation, increases follicular helper T (Tfh) cell numbers and causes lupus-like autoimmune disease in mice. In T cells, we did not identify a unique role for the much lower expressed paralog Roquin-2. However, combined ablation of both genes induced accumulation of T cells with an effector and follicular helper phenotype. We showed that Roquin-1 and Roquin-2 proteins redundantly repressed the mRNA of inducible costimulator (Icos) and identified the Ox40 costimulatory receptor as another shared mRNA target. Combined acute deletion increased Ox40 signaling, as well as Irf4 expression, and imposed Tfh differentiation on CD4+ T cells. These data imply that both proteins maintain tolerance by preventing inappropriate T cell activation and Tfh cell differentiation, and that Roquin-2 compensates in the absence of Roquin-1, but not in the presence of its mutated form

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation

    Get PDF
    The paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-kappa B activation, and its proteolytic domain cleaves negative NF-kappa B regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown. We demonstrate that targeted Malt1-paracaspase inactivation induces a lethal inflammatory syndrome with lymphocyte-dependent neurodegeneration in vivo. Paracaspase activity is essential for regulatory T cell (Treg) and innate-like B cell development, but it is largely dispensable for overcoming Malt1-dependent thresholds for lymphocyte activation. In addition to NF-kappa B inhibitors, Malt1 cleaves an entire set of mRNA stability regulators, including Roquin-1, Roquin-2, and Regnase-1, and paracaspase inactivation results in excessive interferon gamma (IFN gamma) production by effector lymphocytes that drive pathology. Together, our results reveal distinct threshold and modulatory functions of Malt1 that differentially control lymphocyte differentiation and activation pathways and demonstrate that selective paracaspase blockage skews systemic immunity toward destructive autoinflammation

    5-Formylcytosine to Cytosine Conversion by C-C Bond Cleavage in vivo

    Get PDF
    Tet enzymes oxidise 5-methyl-deoxycytidine (mdC) to 5-hydroxymethyl-dC (hmdC), 5-formyl-dC (fdC) and 5-carboxy-dC (cadC) in DNA. It was proposed that fdC and cadC deformylate and decarboxylate to dC in the course of an active demethylation process. This would re-install canonical dC bases at previously methylated sites. The question whether such direct C-C bond cleavage reactions at fdC and cadC occur in vivo remains an unsolved problem. Here we report the incorporation of synthetic isotope- and (R)-2’-fluorine-labelled dC and fdC-derivatives into the genome of cultured mammalian cells. Following the fate of these probe molecules using UHPLC-MS/MS provided quantitative data about the formed reaction products. The data show that the labelled fdC probe is efficiently converted into the corresponding labelled dC, most likely after its incorporation into the genome. This allows concluding that fdC is undergoing C-C bond cleavage in stem cells that leads to the direct re-installation of unmodified dC

    Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation

    Full text link
    Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (TFH cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the TH17 subset of helper T cells in the lungs. Roquin inhibited TH17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the TH17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance TH17 differentiation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    corecore