60 research outputs found

    Tectonic Processes Modeling For High-Level Radioactive Waste Disposal

    Get PDF
    The possibility of using deep geological formations to dispose of high-level radioactive waste (HLW) is a subject raising heated debate among scientists. In Russia, the idea of constructing HLW repository in the Niznekansky granitoid massif (NKM) in Krasnoyarsk area is widely discussed. To solve this problem we are elaborating a technology associated with time – space stability prediction of the geological environment, which is subject to geodynamic processes evolutionary effects. It is based on the prediction of isolation properties stability in a structural tectonic block of the Earth’s crust for a given time. The danger is in the possibility that the selected structural block may be broken by new tectonic faults or movements on a passive fault may be activated and thus underground water may penetrate to HLW containers

    Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    Full text link
    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available from most volcano observatoriesComment: 4 pages, 4 figure

    Heavy fermions in high magnetic field

    Get PDF
    We give an overview on experimental studies performed in the last 25 years on heavy-fermion systems in high magnetic field. The properties of field-induced magnetic transitions in heavy-fermion materials close to a quantum antiferromagnetic-to-paramagnetic instability are presented. Effects of a high magnetic field to the Fermi surface, in particular the splitting of spin-up and spin-down bands, are also considered. Finally, we review on recent advances on the study of non-centrosymmetric compounds and ferromagnetic superconductors in a high magnetic field.Comment: 37 pages, 26 figures, Special Issue of the "Comptes Rendus de l'Acad\'emie des Sciences" on the Physics in High Magnetic Fiel

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore