471 research outputs found

    Theory of Unconventional Superconductivity in Strongly Correlated Systems: Real Space Pairing and Statistically Consistent Mean-Field Theory - in Perspective

    Full text link
    In this brief overview we discuss the principal features of real space pairing as expressed via corresponding low-energy (t-J or periodic Anderson-Kondo) effective Hamiltonian, as well as consider concrete properties of those unconventional superconductors. We also rise the basic question of statistical consistency within the so-called renormalized mean-field theory. In particular, we provide the phase diagrams encompassing the stable magnetic and superconducting states. We interpret real space pairing as correlated motion of fermion pair coupled by short-range exchange interaction of magnitude J comparable to the particle renormalized band energy ∌tx\sim tx, where xx is the carrier number per site. We also discuss briefly the difference between the real-space and the paramagnon - mediated sources of superconductivity. The paper concentrates both on recent novel results obtained in our research group, as well as puts the theoretical concepts in a conceptual as well as historical perspective. No slave-bosons are required to formulate the present approach

    Conductance of a double quantum dot with correlation-induced wave function renormalization

    Full text link
    The zero-temperature conductance of diatomic molecule, modelled as a correlated double quantum dot attached to noninteracting leads is investigated. We utilize the Rejec-Ramsak formulas, relating the linear-response conductance to the ground-state energy dependence on magnetic flux within the framework of EDABI method, which combines exact diagonalization with ab initio calculations. The single-particle basis renormalization leads to a strong particle-hole asymmetry, of the conductance spectrum, absent in a standard parametrized model study. We also show, that the coupling to leads V=0.5t (t is the hopping integral) may provide the possibility for interatomic distance manipulation due to the molecule instability.Comment: Presented on the The International Conference on Strongly Correlated Electron Systems SCES'05, July 26-30th 2005, Vienna, Austria. An abbreviated version will appear in Physica

    Partial localization of correlated electrons: spin dependent masses, saturated ferromagnetism, and effective s-d model

    Full text link
    We determine the localization threshold in a partially filled and orbitally degenerate model of correlated electrons. Particular emphasis is put on a non-integer band filling, when the system decomposes into the localized and the itinerant subsystems; this situation is described by an effective s-d model. A simultaneous transition to the ferromagnetic state is discussed as driven by the Hund's rule coupling. Dependence of the quasiparticle mass on the spin direction appears naturally in the ferromagnetic phase and is attributed to the electron correlation effects, as is also a metamagnetic transition in an applied field. Although the main results have been obtained within the saddle point slave-boson approach, their qualitative features are discussed in general terms, i.e. as a transition from quantum-mechanical indistinguishability of particles to the two-component situation. A comparison with the situation for the orbitally nondegenerate band is also briefly mentioned.Comment: 9 pages, 7 figure

    Fifty years of Hubbard and Anderson lattice models: from magnetism to unconventional superconductivity - A brief overview

    Full text link
    We briefly overview the importance of Hubbard and Anderson-lattice models as applied to explanation of high-temperature and heavy-fermion superconductivity. Application of the models during the last two decades provided an explanation of the paired states in correlated fermion systems and thus extended essentially their earlier usage to the description of itinerant magnetism, fluctuating valence, and the metal-insulator transition. In second part, we also present some of the new results concerning the unconventional superconductivity and obtained very recently in our group. A comparison with experiment is also discussed, but the main emphasis is put on rationalization of the superconducting properties of those materials within the real-space pairing mechanism based on either kinetic exchange and/or Kondo-type interaction combined with the electron correlation effects.Comment: 22 pages, 7 figures, sent to Philosophical Magazin

    Universal scaling and quantum critical behavior of CeRhSb(1-x)Sn(x)

    Full text link
    We propose a universal scaling rho*chi=const of the electrical resistivity rho with the inverse magnetic susceptibility chi^(-1) below the temperature of the quantum-coherence onset for the Ce 4f states in CeRhSb(1-x)Sn(x). In the regime, where the Kondo gap disappears (x~0.12), the system forms a non-Fermi liquid (NFL), which transforms into a Fermi liquid at higher temperature. The NFL behavior is attributed to the presence of a novel quantum critical point (QCP) at the Kondo insulator - correlated metal boundary. The divergent behavior of the resistivity, the susceptibility, and the specific heat has been determined when approaching QCP from the metallic side.Comment: Sent to Phys. Rev. Let

    Seebeck effect in the graphene-superconductor junction

    Full text link
    Thermopower of graphene-superconductor (GS) junction is analyzed within the extended Blonder- Tinkham-Klapwijk formalism. Within this approach we have also calculated the temperature de- pendence of the zero-bias conductance for GS junction. Both quantities reflect quasi-relativistic nature of massless Dirac fermions in graphene. Both, the linear and the non-linear regimes are considered.Comment: 5 pages, 4 figure

    Anderson lattice with explicit Kondo coupling: general features and the field-induced suppression of heavy-fermion state in ferromagnetic phase

    Full text link
    We apply the extended (statistically-consistent, SGA) Gutzwiller-type approach to the periodic Anderson model (PAM) in an applied magnetic field and in the strong correlation limit. The finite-U corrections are included systematically by transforming PAM into the form with Kondo-type interaction and residual hybridization, appearing both at the same time. This effective Hamiltonian represents the essence of \textit{Anderson-Kondo lattice model}. We show that in ferromagnetic phases the low-energy single-particle states are strongly affected by the presence of the applied magnetic field. We also find that for large values of hybridization strength the system enters the so-called \textit{locked heavy fermion state}. In this state the chemical potential lies in the majority-spin hybridization gap and as a consequence, the system evolution is insensitive to further increase of the applied field. However, for a sufficiently strong magnetic field, the system transforms from the locked state to the fully spin-polarized phase. This is accompanied by a metamagnetic transition, as well as by drastic reduction of the effective mass of quasiparticles. In particular, we observe a reduction of effective mass enhancement in the majority-spin subband by as much as 20% in the fully polarized state. The findings are consistent with experimental results for Cex_xLa1−x_{1-x}B6_6 compounds. The mass enhancement for the spin-minority electrons may also diminish with the increasing field, unlike for the quasiparticles states in a single narrow band in the same limit of strong correlations

    Statistical properties and statistical interaction for particles with spin: Hubbard model in one dimension and statistical spin liquid

    Full text link
    We derive the statistical distribution functions for the Hubbard chain with infinite Coulomb repulsion among particles and for the statistical spin liquid with an arbitrary magnitude of the local interaction in momentum space. Haldane's statistical interaction is derived from an exact solution for each of the two models. In the case of the Hubbard chain the charge (holon) and the spin (spinon) excitations decouple completely and are shown to behave statistically as fermions and bosons, respectively. In both cases the statistical interaction must contain several components, a rule for the particles with the internal symmetry.Comment: (RevTex, 16 pages, improved version
    • 

    corecore