9 research outputs found

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mor-tality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6-8 years throughout Europe. For explanation of technical terms in this abstract see Box 1.First, mixed stands produced more gross growth (+10%) but less net growth (-28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumu-lated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth.Second, the mortality rates, the self-and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands.Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey.Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine.Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.)

    Get PDF
    Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) dominate many of the European forest stands. Also, mixtures of European beech and Scots pine more or less occur over all European countries, but have been scarcely investigated. The area occupied by each species is of high relevance, especially for growth evaluation and comparison of different species in mixed and monospecific stands. Thus, we studied different methods to describe species proportions and their definition as proportion by area. 25 triplets consisting of mixed and monospecific stands were established across Europe ranging 0from Lithuania to Spain in northern to southern direction and from Bulgaria to Belgium in eastern to western direction. On stand level, the conclusive method for estimating the species proportion as a fraction of the stand area relates the observed density (tree number or basal area) to its potential. This stand-level estimation makes use of the potential from comparable neighboring 0monospecific stands or from maximum density lines derived from other data, e.g. forest inventories or permanent observations plots. At tree level, the fraction of the stand area occupied by a species can be derived from the proportions of their crown projection area or of their leaf area. The estimates of the potentials obtained from neighboring monospecific stands, especially in older stands, were poorer than those from the maximum density line depending on the Martonne aridity index. Therefore, the stand-level method in combination with the Martonne ridity index for potential densities can be highly recommended. The species’ proportions estimated with this method are best approximated by the proportions of the species’ leaf areas. In forest practice, the most commonly applied method is an ocular estimation of the proportions by crown projection area. Even though the proportions of pine were calculated here by measuring crown projection areas in the field, we found this method to underestimate the proportion by 25% compared to the stand-level approach

    Mixing has limited impacts on the foliar nutrition of European beech and Scots pine trees across Europe

    No full text
    Tree species-mixing has been suggested as one option to counteract the adverse effects of global change on tree mineral nutrition, yet the effect of mixing on nutrient availability remains poorly documented. We therefore analyzed the current foliar nutrient (N, P, K, Ca, Mg) quantities and ilr balances (isometric log transformed ratios between elements or groups of elements) for 261 European beech and 248 Scots pine trees from 15 sites, each consisting of one beech-pine mixed stand and the respective monocultures, across a gradient of environmental conditions in Europe. We hypothesized an overall positive effect of mixing on tree foliar nutrient content, and that this mixing effect would be stronger on nutrient-poor sites. Using linear mixed models and multivariate linear regression models, we first tested for the effects of species (beech/pine) and composition (pure/mixed) across all sites; we then investigated whether the species-mixing effect was related to site fertility. The nutrient composition of beech leaves and pine needles differed significantly for all ilr balances. For both species, significant mixing effects were detected for some nutrients and ilr balances; those effects, however, could not be consistently related to contrasted nutrient composition between species. For most nutrients and ilr balances, the mixing effect was influenced by the site nutritional status, but the pattern differed from expectation: absence or minor differences between monocultures and mixtures at the lower end of the chemical fertility gradient, and maximum differences in rich soils. The contrasting foliar nutrient composition of pine and beech trees and the site nutrient status only partly explained the mixing effects on tree mineral nutrition. Our results claim for a better understanding of nutrientrelated mechanisms associated with complementarity and points towards the need to further expand the existing frameworks to account for the multivariate nature of tree nutrition

    Mortality reduces overyielding in mixed Scots pine and European beech stands along a precipitation gradient in Europe

    Get PDF
    Many studies show that mixed species stands can have higher gross growth, or so-called overyielding, compared with monocultures. However, much less is known about mortality in mixed stands. Knowledge is lacking, for example, of how much of the gross growth is retained in the standing stock and how much is lost due to mortality. Here, we addressed this knowledge gap of mixed stand dynamics by evaluating 23 middle-aged, unthinned triplets of monospecific and mixed plots of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) repeatedly surveyed over 6–8 years throughout Europe. For explanation of technical terms in this abstract see Box 1. First, mixed stands produced more gross growth (+10%) but less net growth (−28%) compared with the weighted mean growth of monospecific stands. In monospecific stands, 73% of the gross growth was accumulated in the standing stock, whereas only 48% was accumulated in mixed stands. The gross overyielding of pine (2%) was lower than that of beech (18%). However, the net overyielding of beech was still 10%, whereas low growth and dropout of pine caused a substantial reduction from gross to net growth. Second, the mortality rates, the self- and alien-thinning strength, and the stem volume dropout were higher in mixed stands than monospecific stands. The main reason was the lower survival of pine, whereas beech persisted more similarly in mixed compared with monospecific stands. Third, we found a 10% higher stand density in mixed stands compared with monospecific stands at the first survey. This superiority decreased to 5% in the second survey. Fourth, the mixing proportion of Scots pine decreased from 46% to 44% between the first and second survey. The more than doubling of the segregation index (S) calculated by Pielou index (S increased from 0.2 to 0.5), indicated a strong tendency towards demixing due to pine. Fifth, we showed that with increasing water supply the dropout fraction of the gross growth in the mixture slightly decreased for pine, strongly increased for beech, and also increased for the stand as a whole. We discuss how the reduction of inter-specific competition by thinning may enable a continuous benefit of diversity and overyielding of mixed compared with monospecific stands of Scots pine and European beech

    Mixing has limited impacts on the foliar nutrition of European beech and Scots pine trees across Europe

    No full text
    The mineral nutrition of major broadleaved and coniferous tree species is deteriorating in Europe. In that context, species-mixing could be an efficient management tool to improve stand nutrition through effects of species interactions on the availability, uptake or use efficiency of nutrients. We analyzed the current foliar nutrient (N, P, K, Ca, Mg) quantities and balances of 260 beech and 248 pine trees from 15 pure and two-species stands across a gradient of environmental conditions throughout Europe. We hypothesized an overall positive effect of mixing on tree nutrition, and that this mixing effect would be stronger on nutrient-poor sites. Using linear mixed models, we first tested for the effects of species (beech/pine) and composition (pure/mixed) across all sites; we then investigated whether mixing was related to site fertility. The composition of beech leaves and pine needles differed significantly for all balances. For both species, significant mixing effects were detected for some nutrients and balances; those effects could however not be related to interspecific differences in foliar nutrient composition. For most nutrients and balances, the mixing effect was affected by the site nutritional status; however, the magnitude of this effect was low, and no consistent pattern could be detected. The contrasting foliar elemental composition of pine and beech trees, and the difference in nutrient status between sites proved insufficient to explain the mixing effects on tree nutrition. While our results suggest limited impact of mixing for those two species, they claim for a better understanding of nutrient-related mechanisms associated with complementarityMiškų ir ekologijos fakultetasVytauto Didžiojo universiteta

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore