56 research outputs found

    Bibliometric analysis of the scientific literature on library service through social media

    Get PDF
    The article\u27s aim is to evaluate the bibliometric analysis on library services through social media between 2010 and 2021. Data for the library services and social media were taken from the Scopus database using bibliometric analysis. For the purpose of obtaining pertinent information from both data sources, a thorough search method was developed. Ultimately, 138 Scopus records were chosen. VOS viewer software, Biblioshiny, and Excel have all been used for data analysis. A total 138 articles from 2010-2021 and related to library service and social media were retrieved from Scopus. Average year of publication was 4.04 and average citations per document were 6.399. Total 303 authors contributed to these 138 articles. The University of Malaya and University of Ghana is the top affiliation to contribute top articles on the Library service and social media. University of Malaya contributes a total 10 articles and the total proportion is 13.8% out of 138 articles. The University of Ghana contributed a total of 9 articles and the proportion is 12.42%. This study offers a comprehensive indication of origin in the areas of library services and social media, which is helpful for the librarians, academicians and novice researchers

    FLOOD-HAZARD MAPPING IN A REGIONAL SCALE – WAY FORWARD TO THE FUTURE HAZARD ATLAS IN BANGLADESH

    Get PDF
    Flood causes substantial economic loss and hindrance to development activities in many developing countries of the world. Bangladesh, a developing country in South-east Asia is ranked as the world’s ninth-most disaster-prone country by the World Risk Report, 2018 because of its high exposure to multiple hazards and less coping and adaptive capacities. The country is recurrently hit by flood hazard almost every year. Being a densely populated country with the fragile economic condition, Bangladesh urgently needs to focus on future flood-risk reduction with more effective measures in order to sustain the development milestone achieved till now. Flood hazard mapping, an initial phase of risk understanding (i.e., perception and knowledge), is often considered to be an indispensable component of flood-risk reduction strategies. In line with the contention, the present study aimed towards flood hazard mapping in Bangladesh where flood prone northeastern part of the country is taken as a case area. Multi-cri teria evaluation technique (MCE) for hazard mapping has been employed where elevation, slope, distance from river, land use and landcover (LULC), precipitation, flow length, and population density were taken as the causative factors. Each factor, as well as their subclasses, were assigned with pertinent weight values based on expert knowledge by analytical hierarchy process (AHP)and subsequently integrated into geographic information system (GIS) platform. According to the final flood-susceptibility map, ~4241 km2 (~ 20% of the total area) area is categorized as the highest flood potential zone which encompasses mostly the southern part of the study area, including Gazipur, Narsingdi, and Brahmanbaria districts. In contrast, low flood potential zone covers ~9362 Km2 (~43% of the total area) area covering the northwestern and southwestern parts (e.g., Mymensing and Tangail districts) of the study region. Besides, a considerable portion of the study region, mostly in the western part (e.g., Sunamganj and Kishoreganj districts) is categorized as moderate flood potential zone encompassing ~7823 km2 (~ 35% of the study area) area. Population density, distance to river and topographic characteristics are found as the most influencing factors for the mapping of flood-risk zones in the current study. This type of assessment in a regional scale may serve as a guide to the relevant stakeholders to formulate flood hazard atlas and minimize the adverse impact of the future flood in Bangladesh

    An Ultra High Frequency Radio Frequency Identification Compatible Circular Polarized Microstrip Antenna Array

    Get PDF
    This study focuses on the development, simulation, and practical validation of a metal-only microstrip patch antenna and its array designed to increase gain. The antenna is specifically designed to meet the growing demand for reliable and efficient RFID systems in various fields, such as asset tracking, inventory management, and smart logistics. Our design utilizes a truncated patch with an air substrate to achieve high gain and circular polarization. The antenna\u27s dimensions measure 468 × 188 × 31 mm³ and deliver impressive performance metrics, boasting a return loss |S11| of -18.21 dB and an estimated gain exceeding 10.6 dBi. These figures compare favorably with the simulated results, which indicate an |S11| of -20.8 dB and a total gain of 11.2 dBi. Our microstrip antenna array demonstrated consistent Circular Polarization quality throughout the radiation angle, with an Axial Ratio of less than 3 dB. This antenna has emerged as a compelling solution for UHF-band RFID technology to meet the demands of various real-world applications

    Effluent-free deep dyeing of cotton fabric with cacao husk extracts using the Taguchi optimization method

    Full text link
    Textile dyehouses are under scrutiny because they discharge colored and hazardous effluents to waterways. There is a need to develop an alternative dyeing system that does not produce any hazardous effluent. The waterless dyeing method could be a viable eco-friendly alternative to the traditional aqueous dyeing method. In this work, cacao husk extracts were used as a natural dye in the decamethylcyclopentasiloxane (D5) medium for the dyeing of cotton fabric, and subsequently, the dyed cotton was treated by a fixation treatment with a cationic dye-fixing agent in the D5 medium. The cotton fabric dyed with cacao husk extracts exhaustion in the waterless D5 medium exhibited better exhaustion, fixation rate, color strength (K/S), and colorfastness to washing and rubbing compared to the fabric dyed with the same extracts using the conventional aqueous dyeing and dye-fixing methods. The dye exhaustion percentage and the dye fixation rate were 95.6% and 94.8% in the D5 medium respectively, which is significantly higher in comparison to a 48.2% dye exhaustion percentage and a 35.3% dye fixation rate in the conventional water medium. An orthogonal array design (L9) was adopted to optimize the dyeing conditions with respect to exhaustion percentage. The results indicated that the dyebath temperature was the most important factor for achieving the optimal dye exhaustion, and dyeing time also showed considerable effects. Linear regression was used to predict the exhaustion percentage, and the resulting p value of 0.000 demonstrated that a strong coefficient was proven among all selected factors. This study has demonstrated that dyeing of cotton fabric with cacao husk extracts in the D5 dyeing system can be a viable method for the textile industry with minimal environmental pollution

    Adsorption, kinetics, and thermodynamic studies of cacao husk extracts in waterless sustainable dyeing of cotton fabric

    Full text link
    Natural dyes exhibit a low dye uptake when cellulosic fiber dyeing is carried out using a conventional water bath dyeing process. In this research, cotton fabric was exhaust dyed in a microemulsion dyebath containing cacao husk extracts dye and decamethylcyclopentasiloxane (D5) to achieve higher dye exhaustion percentage on cotton fiber, which is an environmentally beneficial dyeing process. The adsorption behavior of cacao husk extract dye in a D5 microemulsion system was investigated under conditions of varied dye mass (1–8% o.w.f), dyeing time (5–500 min), and dyeing temperatures (333–373 K). Kinetic modelling of cacao husk extracts dye/D5 adsorption on cotton fiber was studied by fitting experimental data to pseudo first-order and pseudo second-order kinetics, and the intraparticle diffusion model. Early results indicated that the kinetic model of adsorption of cacao husk extracts dye on cotton fiber followed the pseudo second-order model. Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherm models were employed to analyze the adsorption isotherms, and the results showed that the adsorption process fit well with the Langmuir model compared to the Freundlich isotherm. The mean adsorption energy from the Dubinin–Radushkevich isotherm model implied that adsorption of the cacao husk extracts onto cotton was accompanied with a physical process. The values of standard enthalpy (ΔH° > 0), standard entropy (ΔS° > 0), and Gibbs free energy (ΔG° < 0) strongly reflected that the adsorption of the cacao husk extracts onto cotton was thermodynamically favourable and feasible. Thus, waterless dyeing of cotton fabric using a natural dye/D5 system explores a sustainable dyeing technology with higher dye exhaustion percentage

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore