95 research outputs found

    Neurogenesis Dynamics-inspired Spiking Neural Network Training Acceleration

    Full text link
    Biologically inspired Spiking Neural Networks (SNNs) have attracted significant attention for their ability to provide extremely energy-efficient machine intelligence through event-driven operation and sparse activities. As artificial intelligence (AI) becomes ever more democratized, there is an increasing need to execute SNN models on edge devices. Existing works adopt weight pruning to reduce SNN model size and accelerate inference. However, these methods mainly focus on how to obtain a sparse model for efficient inference, rather than training efficiency. To overcome these drawbacks, in this paper, we propose a Neurogenesis Dynamics-inspired Spiking Neural Network training acceleration framework, NDSNN. Our framework is computational efficient and trains a model from scratch with dynamic sparsity without sacrificing model fidelity. Specifically, we design a new drop-and-grow strategy with decreasing number of non-zero weights, to maintain extreme high sparsity and high accuracy. We evaluate NDSNN using VGG-16 and ResNet-19 on CIFAR-10, CIFAR-100 and TinyImageNet. Experimental results show that NDSNN achieves up to 20.52\% improvement in accuracy on Tiny-ImageNet using ResNet-19 (with a sparsity of 99\%) as compared to other SOTA methods (e.g., Lottery Ticket Hypothesis (LTH), SET-SNN, RigL-SNN). In addition, the training cost of NDSNN is only 40.89\% of the LTH training cost on ResNet-19 and 31.35\% of the LTH training cost on VGG-16 on CIFAR-10

    Health Services Utilization in China during the COVID-19 Pandemic: Results from a Large-Scale Online Survey

    Get PDF
    Timely access to essential health services is a concern as COVID-19 continues. This study aimed to investigate health services utilization during the first wave of the pandemic in China. A cross-sectional online survey was conducted using a self-administrated questionnaire in March 2020. Descriptive statistics and logistic regression were used for data analysis. A total of 4744 respondents were included, with 52.00% reporting affected services utilization. Clinical testing (68.14%) and drug purchase (49.61%) were the most affected types. Higher education level, being married, chronic disease, frequently visiting a provincial medical institution, spending more time on pandemic-related information, perception of high-risk of infection, perception of large health impact of the pandemic, and anxiety/depression were significant predictors for reporting affected services utilization. For the 431 chronic disease respondents, 62.18% reported interruption, especially for drug purchase (58.58%). Affected health services utilization was reported during the first wave of the pandemic in China, especially for those with higher education level, chronic diseases, and COVID-19 related concerns. Enhancing primary healthcare, use of telehealth, extended prescription, and public communication were countermeasures undertaken by China during the rapid rise period. As COVID-19 progresses, the changing disease characteristics, adapted health system, along with enhanced public awareness/knowledge should be considered for the evolution of health services utilization, and further investigation is needed

    Highly Efficient Air-Mode Silicon Metasurfaces for Visible Light Operation Embedded in a Protective Silica Layer

    Get PDF
    Dielectric metasurfaces have significant potential for delivering miniaturized optical systems with versatile functionalities, leading to applications in various fields such as orbital angular momentum generation, imaging, and holography. Among the different materials, crystalline silicon has the advantage of technological maturity and high refractive index, which increases design flexibility and processing latitude. The second, and often overlooked, advantage of silicon is that it affords embedding the metasurface in a protective material such as silica, which is essential for practical applications. The trade-off against this high refractive index is silicon's absorption at visible wavelength, which requires new design strategies. Here, such a strategy based on metasurfaces supporting air modes is identified that can lead to a transmission efficiency as high as 87% at a wavelength of 532 nm. This exceptional efficiency is obtained by using the high index to confine the electric field in the periphery of the meta-atoms, thereby reducing absorption losses. As an example, the design of a fully embedded metasurface is described that can generate vortex beams with various orders of orbital angular momentum. It is envisioned that the proposed strategy paves the way for practical applications of high-efficiency metasurfaces based on crystalline silicon

    Weighted gene co-expression network analysis identifies genes related to HG Type 0 resistance and verification of hub gene GmHg1

    Get PDF
    IntroductionThe soybean cyst nematode (SCN) is a major disease in soybean production thatseriously affects soybean yield. At present, there are no studies on weighted geneco-expression network analysis (WGCNA) related to SCN resistance.MethodsHere, transcriptome data from 36 soybean roots under SCN HG Type 0 (race 3) stresswere used in WGCNA to identify significant modules.Results and DiscussionA total of 10,000 differentially expressed genes and 21 modules were identified, of which the module most related to SCN was turquoise. In addition, the hub gene GmHg1 with high connectivity was selected, and its function was verified. GmHg1 encodes serine/threonine protein kinase (PK), and the expression of GmHg1 in SCN-resistant cultivars (‘Dongnong L-204’) and SCN-susceptible cultivars (‘Heinong 37’) increased significantly after HG Type 0 stress. Soybean plants transformed with GmHg1-OX had significantly increased SCN resistance. In contrast, the GmHg1-RNAi transgenic soybean plants significantly reduced SCN resistance. In transgenic materials, the expression patterns of 11 genes with the same expression trend as the GmHg1 gene in the ‘turquoise module’ were analyzed. Analysis showed that 11genes were co-expressed with GmHg1, which may be involved in the process of soybean resistance to SCN. Our work provides a new direction for studying the Molecular mechanism of soybean resistance to SCN

    Ultrahigh Numerical Aperture Metalens at Visible Wavelengths

    Get PDF
    Subwavelength imaging requires the use of high numerical aperture (NA) lenses together with immersion liquids in order to achieve the highest possible resolution. Following exciting recent developments in metasurfaces that have achieved efficient focusing and novel beam-shaping, the race is on to demonstrate ultrahigh-NA metalenses. The highest NA that has been demonstrated so far is NA = 1.1, achieved with a TiO2 metalens and back-immersion. Here, we introduce and demonstrate a metalens with a high NA and high transmission in the visible range, based on crystalline silicon (c-Si). The higher refractive index of silicon compared to TiO2 allows us to push the NA further. The design uses the geometric phase approach also known as the Pancharatnam-Berry (P-B) phase, and we determine the arrangement of nanobricks using a hybrid optimization algorithm (HOA). We demonstrate a metalens with NA = 0.98 in air, a bandwidth (full width at half-maximum, fwhm) of 274 nm, and a focusing efficiency of 67% at 532 nm wavelength, which is close to the transmission performance of a TiO2 metalens. Moreover, and uniquely so, our metalens can be front-immersed into immersion oil and achieve an ultrahigh NA of 1.48 experimentally and 1.73 theoretically, thereby demonstrating the highest NA of any metalens in the visible regime reported to the best of our knowledge. The fabricating process is fully compatible with microelectronic technology and therefore scalable. We envision the front-immersion design to be beneficial for achieving ultrahigh-NA metalenses as well as immersion metalens doublets, thereby pushing metasurfaces into practical applications such as high resolution, low-cost confocal microscopy and achromatic lenses

    A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): JWST Reveals a Filamentary Structure around a z = 6.61 Quasar

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We present the first results from the JWST program A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE). This program represents an imaging and spectroscopic survey of 25 reionization-era quasars and their environments by utilizing the unprecedented capabilities of NIRCam Wide Field Slitless Spectroscopy (WFSS) mode. ASPIRE will deliver the largest ( ∌280arcmin2 ) galaxy redshift survey at 3–4 ÎŒm among JWST Cycle 1 programs and provide extensive legacy values for studying the formation of the earliest supermassive black holes, the assembly of galaxies, early metal enrichment, and cosmic reionization. In this first ASPIRE paper, we report the discovery of a filamentary structure traced by the luminous quasar J0305–3150 and 10 [O iii] emitters at z = 6.6. This structure has a 3D galaxy overdensity of ÎŽ gal = 12.6 over 637 cMpc3, one of the most overdense structures known in the early universe, and could eventually evolve into a massive galaxy cluster. Together with existing VLT/MUSE and ALMA observations of this field, our JWST observations reveal that J0305–3150 traces a complex environment where both UV-bright and dusty galaxies are present and indicate that the early evolution of galaxies around the quasar is not simultaneous. In addition, we discovered 31 [O iii] emitters in this field at other redshifts, 5.3 < z < 6.7, with half of them situated at z ∌ 5.4 and 6.2. This indicates that star-forming galaxies, such as [O iii] emitters, are generally clustered at high redshifts. These discoveries demonstrate the unparalleled redshift survey capabilities of NIRCam WFSS and the potential of the full ASPIRE survey data set.Peer reviewe

    A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z > 6.5 Quasars Using JWST

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∌4100 and 5100 Å. The profiles of these quasars’ broad HÎČ emission lines span a full width at half maximum from 3000 to 6000 km s−1. The HÎČ-based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii-based BH masses. The new measurements based on the more reliable HÎČ tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≀ 1200 km s−1), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s−1 relative to the [C ii] 158 ÎŒm line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties.Peer reviewe

    Ultra-thin transmissive crystalline silicon high-contrast grating metasurfaces

    Get PDF
    Dielectric metasurfaces made from crystalline silicon, titanium dioxide, gallium nitride and silicon nitride have developed rapidly for applications in the visible wavelength regime. High performance metasurfaces typically require the realisation of subwavelength, high aspect ratio nanostructures, the fabrication of which can be challenging. Here, we propose and demonstrate the operation of high performance metasurfaces in ultra-thin (100 nm) crystalline silicon at the wavelength of 532 nm. Using optical beam analysis, we discuss fabrication complexity and show that our approach is more fabrication-tolerant than the nanofin approach, which has so far produced the highest performance metasurfaces, but may be difficult to manufacture, especially when using nanoimprint lithography

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    • 

    corecore